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Introduction 
The target of process synthesis is to discover the best complete design to accomplish a 

chemical-manufacturing goal. In this process first the alternatives have to be considered. 

Usually most of the alternatives can be ruled out according to engineering experience, but 

even the number of remained alternatives is even so huge, that process synthesis needs 

systematic study.  

The term ’synthesis’ was introduced in the late-1960s (Masso and Rudd, 1969), and the first 

review article was published in 1973 (Hendry et al.). Since then several papers dealt with the 

searching methods, the representations of flowsheets, and the objective functions applied in 

different branches of the chemical engineering. 

The searching methods can be classified into three groups: targeting methods, knowledge 

based methods and optimisation techniques. Targeting methods determine certain features 

that a „good”, near optimal design should exhibit. For example using the pinch analysis of 

Linnhoff (1993, 1994) the minimum utility assumptions in a heat exchanger network can be 

determined without any design. However, after the use of targeting methods the engineer 

usually have to do the design using another technique. Knowledge based methods are based 

on the engineering experience, or the rules of thumb. Maybe the heuristic evolutionary 

method of Douglas (1985, 1988) is the most known method among them. In this method the 

original problem is decomposed into five simpler levels, and these levels are solved in 

sequence, based on the engineering experience. The knowledge based methods can find a very 

good, near optimal solution, but they are fallible. Without earlier experience, or the collection 

of earlier solved problems, it is very difficult to use them.  

In the optimisation techniques a mathematical representation of the problem is generated, and 

optimised. These approaches have two main groups: stochastic and deterministic optimisation 

methods. Stochastic optimisation methods can deal with huge, complex problem, and can 

handle any degree of nonlinearities or discontinuities. These approaches can find near optimal 

solution very fast; however, they cannot guarantee the global optimality of the solution. 

Deterministic optimisation methods, i.e. mathematical programming, perform the most 

rigorous search. In the last decades these methods have attracted more and more attention 

because of the fast development of computers and of the increase of computational capacity. 

They guarantee the global optimum in case of convex problem.  

Mathematical programming has three main steps. (1) First a superstructure containing all the 

considered alternatives, and its graph representation, are generated. (2) Then a mathematical 
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representation is formulated, based on the graph representation of the superstructure. (3) 

Finally, the mathematical model is optimised. 

The most common mathematical representation, which can handle also discrete decisions, is 

the mixed integer nonlinear programming (MINLP). Several MINLP models and 

representations have been published in different branches of chemical engineering (heat 

exchange networks, mass exchange networks, rectification columns and distillation sequences, 

reactive distillation, etc.). These models are formulated in such ways that they can be solved 

easily using one of the optimisation algorithms. Grossmann (1996) defined the three major 

guidelines of a „good” MINLP representation: (1) Keep the problem as linear as possible. (2) 

Develop a formulation whose NLP relaxation is as tight as possible. (3) If possible, 

reformulate the MINLP as a convex programming problem.  

Generation of the superstructure is an important part of the synthesis. If the superstructure is 

not defined properly, the problem can be infeasible, or the real optimum can be excluded from 

the representation. This step requires engineering experience. Until now only one automatic 

superstructure generation method is published, by Friedler and co-workers (1992ab, 1993, 

1998). However, this method requires engineering considerations, as well, to choose the units 

from which the superstructure is generated. It seems evident that in generating the 

superstructure the memory of earlier solved problems and cases should be utilized, for 

example using a knowledge based method. 

Multiplicity causes serious problems in MINLP models. Multiplicity means that several 

solutions of the mathematical representation define the same structure. It can also be said that 

a structure is represented by isomorphic graphs. In this case, the objective function has the 

same value in several different points. It makes more difficult finding the optimum, and the 

search space is unnecessarily big. Multiplicity is usually decreased in the second step of the 

mathematical programming, and the MINLP model is formulated in the way as to have as low 

multiplicity as possible. In some cases, however, even the graph representation of the 

superstructure can be generated in the way as to exclude isomorphic graphs. 

An important characteristic of an MINLP model is the number of its binary variables. With 

increasing number of binary variables, the complexity of the problem and the solution time 

increase exponentially. An MINLP model can be reformulated in a way as to decrease the 

number of binary variables by introducing new continuous variables and constraints. Taking 

into account the possibility of decreasing the number of binary variables already in the 

generation of superstructure and graph representation would also be useful.  
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Mainly the second and the third step of the mathematical programming are studied in the 

literature. It is not rare that a new MINLP representation is published with a new, most 

appropriate algorithm. The new algorithms are developed in order to be able to solve larger, 

more complex problems, to easier handle discontinuities, and nonlinearities. However, 

sometimes these algorithms can be used only in a very narrow branch of problems. The 

MINLP representations are usually generated in such a way as to be suitable for solving by a 

certain algorithm. 

In my PhD dissertation I present my results in these topics. In the next chapter the main 

methods of process synthesis are reviewed. The mathematical programming and the use of 

MINLP representations in the chemical engineering are detailed. In the third chapter I present 

the use of a knowledge based method, case-based reasoning, in the selection of proper 

superstructure with MINLP model in distillation column synthesis. In the fourth chapter I 

study the relation between structures, graphs, and representations, and I give guidelines for 

the generation of the superstructure and the MINLP model in order to enhance the possibility 

of finding the global optimum of the problem. Finally, in the fifth chapter I demonstrate the 

use of these guidelines in the generation of a new superstructure and MINLP model in 

distillation column synthesis.  
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1. Literature review 
The goal of process synthesis is to find the optimal process flowsheet according to a given 

objective function, which is commonly economic in nature. First all the alternatives have to 

be considered in an implicit or explicit way. Then the optimal structure, i.e. the units, the 

interconnections among them, and their operational parameters, has to be determined by a 

searching algorithm. The solution is optimal if the objective reached its extreme, e.g. the total 

cost is minimal, or the net present value is maximal. 

Several reviews have been published about process synthesis. Some of them are: Hendry et al., 

1973; Hlavacek, 1978; Nishida et al., 1981; Coulson et al., 1985; Douglas, 1988; Smith, 1995; 

Ullmann, 1996; Biegler et al., 1997. 

 

Calculating and comparing all the alternatives and choosing the best solution among them 

seems to be an evident methodology for process synthesis, but usually it is impossible, as it is 

shown by a simple assignment problem (The New Encyclopædia Britannica, 1990-

1999, ’optimisation’ entry). The target is to assign 70 jobs to 70 differently qualified workers 

of a company in a way that all the workers get the best suited work to their qualification. The 

number of all alternatives is 70! (=70·69·…·2·1). It means that 70! alternatives should be 

studied; this is about 10100. If this calculation is performed with a computer which studies an 

alternative in one second then the solution of the problem takes more than 1087 years, much 

more than the estimated age of the universe. 

In a complex chemical process the number of possible alternatives can be infinite. Most of 

these alternatives can be ruled out according to engineering considerations, but even the 

number of the remaining alternatives is so huge that the process synthesis needs systematic 

study. 

 

1.1. Searching methods 

Grossmann and Daichendt (1996) classified the searching methodologies into three groups: 

targeting methods, heuristics, and optimisation techniques. Li and Kraslawski (2004) listed 

other techniques next to heuristics, and called them knowledge based methods.  

 



1. Literature review 

 

 9

1.1.1. Targeting methods 

Targeting methods determine certain features that a „good”, near optimal design should 

exhibit.  

The most known targeting method is perhaps the pinch analysis developed by Linnhoff (1993, 

1994). It is used for determining the design targets of heat exchanger network (HEN) 

synthesis, such as minimum cold and hot utility assumptions, using physical and graphical 

insights. According to the characteristics of the streams, the cold and hot composite curves are 

drawn, and after finding the pinch point by shifting the composite curves, the minimum cold 

and hot utility assumptions can be read from the diagram. 

El-Halwagi and Manouthiousakis (1989) applied the pinch analysis in mass exchange 

network (MEN) synthesis based on the analogy between HENs and MENs. 

Hallale (1998) developed a supertargeting method which determines the target optimal cost 

of a mass exchange network without any synthesis. 

The main advantage of targeting methods is that they provide guidelines without performing 

any complex design. Their main weakness is that the engineer usually still has to do the 

design work using an other method. 

 

1.1.2. Knowledge based methods 

Knowledge based methods concentrate on the representation and knowledge organisation of 

the design problem. Usually they use the earlier experience of the engineer, or the search is 

based on previously solved problems. 

The most known knowledge based method is the heuristic approach which is based on the 

long-term experience of engineers, and uses the (usually unproven) rules of thumb in the 

design. Masso and Rudd (Rudd, 1969; Masso and Rudd, 1969) were among the first to 

propose using heuristics. They used heuristic rules in the selection of the next match in the 

sequential synthesis of heat exchanger networks. Douglas (1985, 1988) developed a general 

hierarchical decomposition method for the synthesis of chemical processes. This method 

breaks down the complex problem into more manageable simpler subproblems. Five decision 

levels are determined, which are solved in sequence: (1) batch versus continuous; (2) input-

output structure of the flowsheet; (3) recycle structure of the flowsheet; (4) separation system 

synthesis; (5) heat recovery network. The main limitation of this method, due to its sequential 

nature, is the impossibility to manage the interactions between different design levels. 

Heuristic approaches in general offer no guarantee of finding the best possible design. 
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Siirola (1996) applied the means-ends analysis in the chemical process synthesis. This is an 

operation-based state transformation paradigm. In case of a problem the raw materials are 

considered as initial state, and the goal products as the goal state. If the value of a property of 

the initial state (e.g. identity, amount, concentration, phase, temperature, pressure) is different 

from the corresponding property of the goal state, a property difference is detected. The 

purpose of the method is to apply technologies in systematic sequence such that these 

property differences are eliminated so that the raw materials become transformed into the 

desired products. Such differences are reduced or eliminated by using the well known 

technologies for appropriate properties, such as chemical reaction to change molecular 

identity, mixing and splitting to change amount, separation to change concentration and purity, 

enthalpy modification to change phase, temperature, pressure, etc. 

Phenomena-driven design proposes that reasoning should not start at the level of building 

blocks but at a low level of aggregation, i.e. at the level of the phenomena that occur in those 

building blocks. Jaksland et al. (1995) developed a separation process design and synthesis 

method based on thermodynamic phenomena. They explored the relationship between the 

physicochemical properties, separation techniques, and conditions of operations. The method 

includes a systematic analysis of a wide range of physical and chemical properties of the 

components of the mixture to be separated. According to this analysis, a binary ratio matrix is 

computed which represents the property differences between all binary pairs. Then the 

feasible separation techniques are determined for each binary pair of components taking into 

account the binary ratio matrix and a matrix of allowable values for the property values. The 

feasible alternatives are screened, and the split factors are estimated. Finally the separation 

tasks are sequenced and the conditions of operations are determined. 

Case-based reasoning (CBR) imitates a human reasoning and tries to solve new problems 

reusing solutions that were applied to past similar problems. CBR deals with very specific 

data from the previous situations, and reuses results and experience to fit a new problem 

situation (Watson, 1997). In case-based reasoning first the most similar case to the actual 

problem is retrieved from a case library. If the solution of this most similar case cannot be 

used for the actual problem, than the earlier solution has to be adapted according to the actual 

requirements. If the problem is solved then, in the last step, it is incorporated in the case 

library. Pajula and co-workers (2001) developed a case-based reasoning method for the 

selection of single separations. Seuranen and co-workers (2005) further developed this 

approach for the synthesis of complex separation sequences.  
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Sauar et al. (1996) have proposed a new principle of process design based on the equipartition 

of the driving forces. They claimed that process design should be optimised by the equal 

distribution of the driving forces throughout the process by assuming that the rates of entropy 

production are proportional to the square of the driving forces. 

d’Anterroches and Gani (2005) developed a group contribution method for process synthesis 

based on the group contribution method for pure component property prediction. In this latter 

method a molecule is described as a set of groups linked together to form a molecular 

structure. In the same way, for flowsheet "property" prediction, a flowsheet can be described 

as a set of process-groups linked together to represent the flowsheet structure. Just as a 

functional group is a collection of atoms, a process-group is a collection of operations 

forming a "unit" operation or a set of "unit" operations. The links between the process-groups 

are the streams similar to the bonds that are attachments to atoms/groups. Each process-group 

provides a contribution to the "property" of the flowsheet, which can be performance in terms 

of energy consumption, thereby allowing a flowsheet "property" to be calculated, once it is 

described by the groups. 

 

Knowledge based methods in general need the use of earlier engineering experience, or an 

organised collection of earlier solved problems. Based on these principles even very large, or 

complex problems can be solved. However, without such experience, or solved cases, a new 

problem can hardly be solved. An other disadvantage of these methods is that they cannot 

guarantee that the best solution is found. Although they often lead to good, near optimal 

design, they are fallible.  

 

1.1.3. Optimisation techniques 

Optimisation techniques use a formal, mathematical, representation of the problem, and they 

search the solution by mathematical optimisation. These methods can be classed into two 

main groups: stochastic (i.e. non-deterministic) and deterministic methods. 

 

Stochastic methods 

Stochastic methods use principles from other branches of science, such as biological systems, 

or physical chemistry. The main feature of these methods is that they can handle any degrees 

of nonlinearities and discontinuities. 
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Simulated annealing builds upon the behaviour of a physical system in a heat bath 

(Kirkpatrick et al., 1983). An ensemble of atoms can be found to different energy states. After 

reducing the temperature, the mobility of the atoms is lost, and the energy of the system 

decreases. When the system is frozen, the lowest energy state is taken. In a mathematical 

representation the variables can behave as the atoms in the physical system. The target is not 

the total energy, but another objective function. Simulated annealing is an iterative procedure. 

In each step of the algorithm a variable is given a small random perturbation, and the 

objective is calculated. If this is smaller than in the previous step, the perturbation is accepted. 

If the objective increased, then the perturbation is accepted with a calculated probability. 

Evolutionary algorithms are based on the collective learning process within a biological 

population of individuals, each of which represents a search point in the space of potential 

solutions to a given problem (Bäck and Schwefel, 1993; Gross and Roosen, 1998). The 

population is arbitrarily initialized, and it evolves towards better and better regions of the 

search space by means of randomized processes of selection, mutation, and recombination. 

The environment (given aim of the search) delivers a quality information (fitness value) of the 

search points, and the selection process favours those individuals of higher fitness to 

reproduce more often than worse individuals. The recombination mechanism allows the 

mixing of parental information while passing it to their descendants, and mutation introduces 

innovation into the population. According to the above authors term ’evolutionary algorithm’ 

covers three algorithms which differ only in the details: evolutionary programming, evolution 

strategies, and genetic algorithm. 

Like simulated annealing, tabu search is an iterative neighbourhood search technique that 

attains the solution space by repeatedly performing state transitions from current state to a 

new state in its neighbourhood (Glover, 1989, 1990; Lin and Miller, 2004). The performed 

transitions are collected in a list, and the reverse moves of these transitions are associated with 

tabu status (i.e. forbidden) in order to force the search away from previous solutions and to 

prevent the search from getting trapped into a cycle. This method utilises selected ideas from 

artificial intelligence to decide on state transitions.  

 

Deterministic methods 

Deterministic methods are often called mathematical programming. These methods have three 

main steps (Grossmann, 1996). (1) First a so-called superstructure is generated, which 

contains all the considered alternative structures of the problem. (2) Then a rigorous 
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mathematical representation of the superstructure is formulated. (3) Finally the mathematical 

model is optimised. 

There are two well-known mathematical programming methods: mixed integer nonlinear 

programming and generalized disjunctive programming.  

Mixed integer nonlinear programming (MINLP) represents the superstructure using only 

algebraic equations. It contains continuous variables assigned to the operational parameters of 

a structure, and binary variables assigned to discrete decisions. 

Generalized disjunctive programming (GDP) uses algebraic equations and also logical 

constraints (Raman and Grossmann, 1994). Operational parameters in this method are also 

denoted by continuous variables, but discrete decisions are expressed by logical variables.  

 

Stochastic optimisation methods cannot guarantee finding the global optimum of a problem; 

however, they usually find a solution really near to the optimal one. Mathematical 

programming methods can guarantee global optimum in case of convex equations and search 

space, but in case of strong non-convexity they can be trapped in local optima. 

 

1.1.4. Hybrid methods 

The advantages of different approaches can be exploited by combining them. 

Fonyó and Mizsey (1990; Mizsey and Fonyó, 1990) combined the hierarchical method of 

Douglas (1988) with mathematical programming. In the first step of their method, hierarchical 

level is used to create good preliminary flowsheets with simple energy integration. Then user-

driven level is involved to tackle all type of constraints, complex configurations, and 

additional implicit knowledge derived during the hierarchical approach. Finally rigorous level 

is used to perform final design using mathematical programming. 

Kravanja and Grossmann (1997) and Daichendt and Grossmann (1998) also integrated the 

mathematical programming approach using MINLP techniques and hierarchical 

decomposition heuristic approach. The main difference of their development from the results 

of Mizsey and Fonyó (1990ab) is that it is concerned with the conceptual design phase, and 

mathematical programming is used not only in the final design but it is integrated with 

hierarchical decomposition. 

Mathematical programming approach was also integrated with the pinch analysis (Kravanja 

and Glavic, 1997), where composite curves were used in pre-screening of heat exchanger 

network superstructures. 
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Comeaux (2000) combined thermodynamic insights and mathematical programming in mass 

exchange network synthesis. Using stream data, and principle of vertical mass transfer, an 

insight based superstructure is generated which contains thermodynamically feasible matches 

only. Based on this superstructure, a pure nonlinear programming problem is formulated, and 

then optimised. Szitkai and co-workers (2005) further developed this technique, and 

published a new superstructure for mass exchange network synthesis based on the heat 

exchanger synthesis superstructure of Yee and Grossmann (1990). 

Hostrup and co-workers (2001) also combined thermodynamic insights and mathematical 

programming approach using MINLP. They used the thermodynamic insight method of 

Jaksland et al. (1995) to generate the superstructure of the mathematical optimisation. 

Fraga and Zilinskas (2003) combined local search methods for the continuous design 

parameters for the units of heat integrated distillation sequences; and evolutionary 

optimisation procedure for the design of the heat exchanger network. 

 

In my dissertation I mainly deal with the mathematical programming approach. First, I study 

the use of case-based reasoning in process synthesis for the preparation of mathematical 

programming model formulation, namely in the generation of the superstructure. Then I study 

the relations between the superstructure, its graph representation, and the generated 

mathematical model. I present an automatic procedure to automatically generate an MINLP 

model based on the R-graph representation of the superstructure. This automatically derived 

model can serve as a reference in the comparison of MINLP models to decide whether an 

MINLP model represents the superstructure, or not. Then I present a method to enhance the 

characteristic of an MINLP model. 

Before presenting my results, in the next sections, I give a detailed description about the used 

methods, case-based reasoning, and mathematical programming. 

 

1.2. Case-based reasoning 

As it was mentioned above, case-based reasoning imitates a human reasoning and tries to 

solve new problems reusing solutions that were applied to past similar problems. CBR deals 

with data from the previous situations, and reuses results and experience to fit a new problem 

situation.  

The central notion of case-based reasoning is a case. The main role of a case is to describe a 

single event from past where a problem was solved. A case is made up of two components: 



1. Literature review 

 

 15

problem and solution. Typically, the problem description consists of a set of attributes and 

their values. Cases are collected in a set to build a case library (case base). The library of 

cases must roughly cover the set of problems that may arise in the considered domain of 

application. 

The main phases of the case-based reasoning activities can be described typically as a cyclic 

process (see Fig. 1.1). During the first step, retrieval, a new problem (target case) is matched 

against problems of the previous cases (source cases) by calculating the similarity function, 

and the most similar problem together with its stored solution are found. If the proposed 

solution does not meet the necessary requirements of actual situation, then adaptation is the 

next step, and a new solution is created. The obtained solution might be validated by external 

rules or human. The approved solution and the new problem together build a new case that is 

incorporated in the case library during the learning step. In this way, CBR system evolves as 

the capability of the system is improved by extending the stored experience. 

 

Target
case

Solved
case

Retrieved
case

Adapted
case

Case library

Confirmed
solution

Suggested
solution

Source
cases

Retrieval

Adaptation

Problem

 
Figure 1.1. Case-based reasoning cyclic process 

 

One of the most important parts of the CBR-cycle is the retrieval. During the retrieval, the 

attributes of the target cases are compared to find the most similar case. There are two widely 

used retrieval techniques (Watson, 1997): nearest neighbour and inductive retrieval. The 

nearest neighbour retrieval simply calculates the differences of the attributes, multiplied by a 

weighting factor. In inductive retrieval a decision tree is produced, which classifies the cases. 

There are classification questions about the main attributes in the nodes of the tree; by 

answering these questions the most similar case is found. 
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1.3. Mathematical programming 

Mathematical programming has been well studied in the last decades. Several review papers 

have been published, such as Grossmann (1985, 1996), Floudas (1995), Grossmann and 

Kravanja (1995, 1997), Grossmann et al. (1999), Biegler and Grossmann (2004); and an 

overview of future perspectives (Grossmann and Biegler, 2004). 

As it was mentioned above, mathematical programming has three main steps: (1) generation 

of the superstructure; (2) formulation of the mathematical representation; and (3) optimisation 

of the mathematical model. These steps are detailed in this section. 

1.3.1. Generation of the superstructure 

In the first step a superstructure has to be generated. This step is presented by an example. 

The example superstructure is shown in Fig. 1.2. In this problem the target is to produce final 

product B from raw material A. For this aim two reactors can be used, connected in parallel. 

Before the reactors the raw material has to be compressed to proper pressure, and heated to 

proper temperature. The end product of the reaction, which contains both components A and B, 

is separated using rectification. The top product of the rectification column is material B, 

which is taken as final product. The bottom product, material A, is recycled, and mixed to the 

raw material. 

 

Figure 1.2. Example flowsheet 

 

Mathematical representation usually is not written for the superstructure, but for the graph-

like representation of the superstructure. The representations of superstructures have two main 

types (Yeomans and Grossmann, 1999a): state-task network (STN), and state-equipment 

network (SEN). 
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For the state-task network representation, first the states and tasks of the problem has to be 

defined (Table 1.1), and then the connections between them are represented in a graph 

(Fig. 1.3). Once the states and tasks are identified, it is necessary to determine what type of 

equipment can perform each task, and then to assign it to the corresponding task. There are 

two cases for this purpose: 

• One task–one equipment (OTOE) assignment: in this case each task is assigned to a 

single equipment unit. 

• Variable task–equipment (VTE) assignment: in this case, a set of equipment that can 

perform all the tasks needed in the flowsheet is identified first. The assignment of the 

equipment to the tasks is then considered as part of the optimisation model. 

The STN representation in Fig. 1.3 is an OTOE assignment. 

 

Table 1.1. States and tasks in the process 

states tasks 
1 raw material A at low pressure and low temperature 1 compression of raw material A 
2 raw material A at low pressure and low temperature 2 mixing raw material A and recycled material A 
3 mixture A at high pressure and low temperature 3 heating mixture A 
4 mixture A at high pressure and high temperature 4 splitting mixture A 
5 splitted mixture A into Rector I. 5 reaction of mixture A in Reactor I. 
6 splitted mixture A into Rector II. 6 reaction of mixture A in Reactor II. 
7 product from Reactor I. 7 mixing the products of reactions 
8 product from Reactor II. 8 separation of mixed products of reaction 
9 mixed product   

10 pure material B   
11 recycled material A   

 

 

2

10

3 41 T1 T2 T3 T4

5

6

T5

T6

7

8

T7 9 T8

11

states tasks  

Figure 1.3. STN representation of the structure 
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Compressor Mixer I Preheater Splitter

Reactor I

Reactor II

Mixer II Rectification
column

 

Figure 1.4. SEN representation of the structure 

 

In the state-equipment network first the necessary units of the process are defined. Then these 

units are connected in a graph-like representation (Fig. 1.4). The units are the nodes of the 

graphs, and the directed edges are the streams between them. The tasks that can take place in 

a specific equipment are not pre-specified, which is equivalent to a VTE assignment. 

 

The superstructure has to be generated in a way that it contains all the considered structures. It 

is usually based on engineering experience. 

Friedler and co-workers (1993) suggested to generate the superstructure in a combinatorial 

way. They defined P-graph, an STN representation, for representing structures (Friedler et al., 

1992a). P-graphs form a special class of bipartite graphs; they consist of operational unit 

nodes (O-type nodes) and material nodes (M-type nodes), connected by edges. Edges always 

connect two different kinds of nodes, namely unit nodes and material nodes. According to the 

P-graph approach, material nodes represent some predefined composition domains. A domain 

may be assigned by dominance, or practical lack of some components as a special, perhaps 

informal, assignment of the composition domain. Generally, some property domain is 

predefined. Operational units are imagined as entities transforming a set of material states in 

the domains represented by material nodes into another set of material states in domains also 

represented by the corresponding material nodes. 

A P-graph represents a combinatorial possible structure if it satisfies the following 

axioms: 

1. Every final product is represented in the graph. 

2. A node of M-type has no input if and only if it represents a raw material. 

3. Every node of O-type represents an operating unit defined in the synthesis problem. 

4. Every node of O-type has at least one path leading to a node of M-type representing a 

final product. 

5. If a node of M-type belongs to the graph, it must be an input to or output from at least 

one node of O-type in the graph. 
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Using P-graphs, the superstructure (or maximal structure) automatically can be generated by 

the MSG algorithm (algorithm for Maximal Structure Generation), and the set of feasible 

structures by the SSG algorithm (Generation of the Solution-Structures) (Friedler et al., 

1992b).  

Friedler and co-workers (1998) demonstrated the use of P-graph in process network synthesis, 

and the generation of the MINLP model. Brendel and co-workers (2000) showed that the 

generation of the conjunctive and disjunctive normal forms to solve process synthesis 

problems by a logical formulation can be mathematically established on the basis of the 

combinatorial approach.  

 

Our workgroup defined superstructure with mathematical rigor for general use in process 

synthesis (Rév et al., 2005). For this aim, we invented a special kind of graph, the so-called R-

graph. The R-graph is a one task–one equipment (OTOE) graph. The nodes of an R-graph are 

not units but the input and output ports of the possible units. The directed edges correspond to 

streams; they always start from an output port node of a unit, and end on an input port node of 

a unit. The output port nodes are treated as arbitrary stream splitters, whereas the input nodes 

as arbitrary unifiers. The R-graph representation of the example flowsheet is shown in 

Fig. 1.5.  
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Figure 1.5. R-graph representation of the example flowsheet 

 

An R-graph is a graph also in mathematical sense. All the edges start from a node, and end on 

a node. Therefore, source and sink units are included in order to prevent edges to start from or 

end on outside the graph. The source units (e.g. Unit 1 in Fig. 1.5) have no input nodes; the 

sink units (e.g. Unit 7 in Fig. 1.5) have no output nodes. 



1. Literature review 

 

 20

The subgraph of an R-graph is a short-hand for sub-R-graph of an R-graph, i.e. it is also an  

R-graph. All the nodes have to be connected in a subgraph, i.e. in an sub-R-graph. A counter-

example is shown in Fig. 1.6, where the second output node of Unit 6 is not connected to any 

other node. This is not an R-graph even if the engineer can easily assign meaning to this 

figure by considering the stream of the unoccupied port as a product, which is not recycled. If 

that kind of layout is permissible then a source unit type should also be used in the graph 

connected to that certain output port. 
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Figure 1.6. A counter-example. This is not an R-graph because there is an unconnected node. 

 

Structural multiplicity is an important phenomenon caused by the possibility of representing 

the same structure with different graphs. For example, if Reactor I and Reactor II had the 

same type (Type DE) in our example, then the two subgraphs in Fig. 1.7 would represent the 

same structure. But they are different because the nodes and edges of the supergraphs are 

unambiguously denominated. (Graphs, by mathematical sense, are constructed from labelled 

entities.) These two R-graphs are called isomorphic because they are identical, neglecting the 

differences in different copies of units of the same type. In other words, they are isomorphic 

because one of them can be transformed to the other one merely by re-naming the units. 

Consequently, the structures are not equivalent to graphs but to sets of isomorphic (or, in 

other word: equivalent) graphs. 
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Figure 1.7. Isomorphic R-graphs 

 

Based on this definition, a structure s is the superstructure of structures s1, s2, …, if these 

structures are the substructures of s. The R-graph representations of the substructures are the 

sub-R-graphs of the R-graph representation of the superstructure. 

 

A benefit of the R-graph representation is that it is close to the modular unit approach, where 

not the units but the their input and output ports are connected. The main difference is the lack 

of stream splitters and unifiers, but it is beneficial for avoiding by-pass redundancy during 

optimisation. 

Fig. 1.8 serves as a simple (and arbitrary) example for demonstrating the redundancy related 

to by-passes. (Similar figure can be seen e.g. in Renaume et al., 1995) By-passing unit A is 

necessary to let unit B exist even if A is not included in the structure. By-passing unit B is 

necessary for the reverse reasoning. An identical substructure at the lower branch may occur. 

For our didactical purposes we apply just a unit C there, also bypassed. These units and 

streams form the superstructure. Exclusion of a unit from the final structure does not exclude 

its by-pass stream. Thus, excluding unit C may bring to life the structure shown in Fig. 1.9.  
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Figure 1.8. Branched structure with by-passes 
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Figure 1.9. A structure with redundant by-passes 

Let the flow rates of the streams leaving units P, A, and B are given; and let the flow rates of 

streams entering into units A, B, and Q are also given. For the sake of simplicity and clarity, 

suppose that the flow rates x and y are equal: x=y. Then the sum x+z, equalling the sum y+z, is 

a constant, where z is the flow rate of the stream by-passing the upper branch. For example, 

let the flow rate leaving Unit P be 100, z=50, x=20, and the input to Unit A be 30. In the same 

time y=20, and let the output from Unit B be 35, then the input to Unit Q is 105.  

Then the flow rate z can be changed on the cost of simultaneously changing the values of x 

and y, without having any influence on the units. Without changing the input and output of 

units P, A, B, and Q, the flow rates may be, for example, z=60, x=y=10, or z=30, x=y=40. 

As a result, the objective function (not given here) may remain constant in a continuous 

subdomain of the feasible solutions. This phenomenon, that has a detrimental effect on 

optimisers, is called by-pass redundancy.  
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1.3.2. Mathematical representation of the superstructure 

After the superstructure is generated, its mathematical representation has to be formulated. As 

it was mentioned above, two kinds of mathematical representations are in use: mixed integer 

nonlinear programming (MINLP), and generalized disjunctive programming (GDP). 

 

An MINLP problem contains both continuous and integer variables, and the integer variables 

are usually binary variables. An MINLP problem can be formulated as follows (Kocis and 

Grossmann, 1987; Grossmann, 1996): 

min OBJ=f(x,z) 
s.t. g(x,z)≤0 
 x∈X={x ⎢x∈Rn, L ≤ x ≤ U} 
 z∈Z={z ⎢z∈{0,1}k, Az ≤ a} (1.1) 

 

where x is the vector of continuous variables specified in the range X, and z is the vector of 

binary variables which must satisfy linear integer constraints Az≤a. f(x,z), and g(x,z) are real 

functions; they may be nonlinear. The commonly applied solver algorithms usually enable the 

binary variables appearing in linear members only. 

In the conventional representation, binary variables (zm) denote the existence of units 

(m=1,…M). If the unit m exists in the actual structure, then zm=1, otherwise zm=0. The logical 

relations between units can be expressed in algebraic form by using binary variables (Raman 

and Grossmann, 1991, 1993).  

 

In GDP, continuous variables are used for the representation of operational parameters like 

pressure, temperature, etc. The discrete decisions (such as describing whether a unit exists or 

not) are formulated by logical expressions using logical variables (Raman and Grossmann, 

1994; Grossmann and Daichendt, 1996; Grossmann and Türkay, 1996; Yeomans and 

Grossmann, 1999b). The general form of a GDP problem is as follows: 
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 x∈X={x ⎢x∈Rn, L ≤ x ≤ U} 
 Z∈Z ={Z ⎢Z∈{true, false}k, Ω(Z)=true} (1.2) 



1. Literature review 

 

 24

 

where x and cm are continuous variables, the latter being used to model costs associated with 

the units; g(x) represents constraints that are valid over the entire search space; Zm is logical 

variable denoting the existence of unit m. 

If the logical variable Zm is true, then unit m exists in the actual structure, and the operational 

equations of the unit (hm(x,cm)≤0) are satisfied. If Zm is false (¬Zm), then the unit does not 

exist; in that case the variables, and the cost of the unit, take zero value. These two sets of 

equations are connected with a logical ’or’ ( ∨ ) relation.  

The relations between units can also be described with pure logical relations (Ω(Z)=true ) 

using logical operators like ’and’ ( ∧ ), ’or’ ( ∨ ), ’exclusive or’ ( ⊕ ), and ’implication’ (⇒ ) 

(see Raman and Grossmann, 1991; Hooker et al., 1994). For example, in our example two 

reactors are connected in parallel. According to engineering experience, the use of both 

reactors must be uneconomic. Therefore, a logical relation is necessary to express that they 

cannot exist simultaneously. This can be done using the logical operator ’or’: 

III ZZ ∨  (1.3) 

 

A GDP representation can be transformed into MINLP representation by using binary 

variables (zm) instead of logical ones (Zm), and transforming the logical relations into algebraic 

form. There are three well-known techniques for this transformation (Balas, 1985; Hui, 1999): 

Big M method, Multi M method, and Convex hull method. These methods are represented by 

a simple example problem transforming a disjunctive expression (Eq. 1.4) into algebraic 

equations: 
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 (1.4) 

where dm is a fixed constant; L and U are the lower and upper bounds on x, respectively. 

Eq. 1.4 can be transformed into algebraic equations using Big M method in the following way: 

( ) ( )mmmm zMdczM −≤−≤−− 11  (1.5a) 

mm zMc ⋅≤  (1.5b) 

mm zMxzM ⋅≤≤⋅−  (1.5c) 

where M is a Big M value. If unit m exist, i.e. zm=1, then both sides in Eq. 1.5a are equal to 0; 

therefore, cm takes the value dm. In this case variable cm has to be smaller than M (Eq. 1.5b), 

and the value of x has to be in the interval [-M; M] according to Eq. 1.5c. 
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If unit m does not exist, i.e. zm=0, then cm does not have to take value dm, the difference 

between them can take any value from interval [-M; M] according to Eq. 1.5a. In this case 

variable cm has to take value 0 (Eq. 1.5b), and so does variable x (Eq. 1.5c).  

The Big M value (M) should be the greatest value of the denoted lower and upper bounds, i.e. 

all the above expressions and variables in Eqs. 1.5 should be able to take value above their 

lower and below their upper bounds. The main drawback of this method is that in all the 

equations the same Big M value is used; therefore, the relaxation of the model is poor. 

The Multi M method has just one main difference from the Big M method; it uses different 

Big M values for each expressions and variables: 

( ) ( )m
dc

mmmm
dc

m zUdczL −≤−≤− −− 11  

m
c
mm zUc ⋅≤  

m
x
mm

x
m zUxzL ⋅≤≤⋅  (1.6) 

where L and U are the lower and upper bounds, respectively, given to the actual expression or 

variable.  

In this way, the relaxation of the model is greatly improved. Note that in the literature, when 

the Multi M method is used then usually it is also called Big M method, and the original 

Big M method is not in use. 

In Convex hull method, all the variables are disaggregated into continuous variables assigned 

to each term of the disjunction, and the constraints in the disjunction are written for these 

disaggregated variables: 
21
mmm ccc +=  

21 xxx +=  

mmm zdc ⋅=1  

( )mm zc −⋅= 102  

mm zUxzL ⋅≤≤⋅ 1  

( )mzx −⋅= 102  (1.7) 

If the unit m exist, i.e. zm=1, then the disaggregated variables with superscript 1 ( 1
mc  and x1) 

satisfy the equations of the first disjunction in Eq. 1.4, and the other disaggregated variables 

take zero value. If the unit does not exist, i.e. zm=0, then the disaggregated variables with 

superscript 2 satisfy the equations of the second disjunction in Eq. 1.4, and the disaggregated 

variables with superscript 1 take zero value. 
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The pure logical constraint in GDP representation, Ω(Z)=true, can also be transformed into 

algebraic equations using binary variables (Raman and Grossmann, 1991). For example, the 

logical constraint between the logical variables of the reactors in our example (Eq. 1.3) can be 

transformed into algebraic form in the following way: 

1≤+ III zz  (1.8) 

According to Eq. 1.8, both the binary variables value cannot take in the same time 1, i.e. the 

reactors cannot exist simultaneously. 

 

1.3.3. Optimisation algorithms 

In the final step of mathematical programming, the formulated mathematical problem has to 

be optimised. Some general overviews about the optimisation algorithms are: Biegler et al. 

(1997), Floudas (1995), Grossmann and Kravanja (1997), Grossmann (1996), Grossmann et 

al. (1999). 

 

There are five main MINLP algorithms (Grossmann, 1996): branch and bound, outer 

approximation, generalized Benders decomposition, extended cutting plane, and LP/NLP 

based branch and bound. 

The branch and bound algorithm (Borchers and Mitchell, 1994) starts by solving the 

continuous NLP relaxation of the original MINLP problem. That is, continuous variables with 

lower bound 0, and upper bound 1 are used instead of the binary ones in the relaxed NLP 

problem. If all the binary variables take binary values, the search is stopped. Otherwise, it 

performs a tree search in the space of the binary variables. These are successively fixed at the 

corresponding nodes of the tree, giving rise to relaxed NLP subproblems which yield lower 

bounds for the subproblems in the descendant nodes. Fathoming of nodes occurs when the 

lower bound exceeds the current upper bound, or when all integer variables take binary values. 

The latter yields an upper bound to the original problem. This method is attractive only if the 

NLP subproblems are relatively inexpensive to solve, or only a few of them need to be solved. 

In the outer approximation method (Duran and Grossmann, 1986), NLP and MILP 

subproblems are solved iteratively. The NLP subproblem is derived from the original MINLP 

problem by fixing the binary variables. The MILP subproblem is derived from the MINLP 

problem by linear relaxation of equations using the solutions of the previous NLP 

subproblems. This relaxation approximates the functions from below, and the solution space 

from outside. In each iteration an integer cut is added to the MILP subproblem in order to 
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exclude the solutions of previous iterations, i.e. to prevent the search from getting trapped into 

a cycle. The NLP subproblems yield an upper bound; the MILP subproblems yield a lower 

bound. The cycle of iterations is stopped if the lower and upper bound are within a tolerance, 

or if the MILP subproblem becomes infeasible. This method generally requires relatively few 

cycles (major iterations). 

The generalized Benders decomposition method (Geoffrion, 1972) is similar to the outer 

approximation method. The only difference is in the way the MILP subproblem is defined. In 

this method only active inequalities are considered, and the set of continuous variables is 

disregarded. This method usually needs more iterations than the previous method to find the 

optimum. 

In the extended cutting plane method (Westerlund and Petersson, 1995), only MILP 

subproblems are solved iteratively. In each iteration the most violated constraint at the 

predicted point is added. The cycle of iterations stops if the maximum constraint violation lies 

within a specified tolerance. Since the continuous and binary variables are converged 

simultaneously, a large number of iterations may be required. 

The LP/NLP based branch and bound method (Quesada and Grossmann, 1992) avoids the 

complete solution of the MILP subproblems in each major iteration. An LP-based branch and 

bound method is performed for the MILP subproblems, solving relaxed NLP subproblems at 

those nodes in which feasible integer solutions are found. 

 

GDP problems can be solved by transforming them into MINLP problems, and then an 

MINLP algorithm can be used. However, this method does not exploit the disjunctive 

structure of the model. 

Türkay and Grossmann (1996) proposed an algorithm for solving nonlinear GDP models 

involving two terms in each disjunction. This is a logical-based outer approximation 

algorithm. Its main advantage is that the NLP subproblems are generated in a way that only 

the active constraints are considered. If in an NLP subproblem Zm is false, i.e. unit m does not 

exist then those constraints which have to be satisfied in the case when unit m exists, are not 

considered. The MILP subproblems are obtained by convex hull linearization of the nonlinear 

inequalities. 

Using the algorithm of Lee and Grossmann (2000), GDP problems involving more than two 

terms can also be solved. In this method, first the convex relaxation of the original GDP 

problem is generated, based on the convex hull of each nonlinear disjunction. Then a special 

branch and bound algorithm is used. In the branching, that disjunction term is selected which 
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is closest to the optimum of the convex relaxation problem. The convex hull relaxation of the 

remaining disjunctions, which have not examined yet, is at the other branch. 

 

In my dissertation, I use the MINLP formulation of the problems. The MINLP problems are 

solved with GAMS program (Brooke et al., 1992) using DICOPT++ solver (Viswanathan and 

Grossmann, 1990). This solver performs the above mentioned outer approximation algorithm. 

 

1.4. Examples for the use of MINLP 

In this section, some process synthesis examples using MINLP are shown. The examples are 

taken from the literature, and represent the maybe most often used processes: heat exchanger 

networks, mass exchange networks, and distillation. 

 

1.4.1. Heat exchanger networks 

The basic HEN synthesis problem can be formulated as follows (Biegler et al., 1997): 

 

Given  

• a set of hot process streams to be cooled and a set of cold process streams to be heated; 

• the flowrates and the inlet and outlet temperatures for all these process streams; 

• the heat capacities for each of the streams versus their temperatures as they pass through 

the heat exchange process; 

• the available utilities, their temperatures, and their costs per unit of heat provided or 

removed. 

The goal is to determine the heat exchanger network for energy recovery that will minimize 

the annualized cost of the equipment plus the annual cost of utilities. 

 

For the synthesis of heat exchanger synthesis problem, the most known approach is perhaps 

the pinch analysis (Linnhoff, 1993, 1994). As it was mentioned above, it is a targeting method. 

First the minimum utility assumptions, then the connections of the hot and cold streams, the 

number and the size of heat exchanger units, are determined. 

The main disadvantage of this approach is that it does not guarantee the reach of global 

optimum because using the minimum consumption usually does not result minimum total cost. 

If more is used from the hot utility, for example, than minimum, then, providing the same 
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amount of heat transfer, the temperature changing of this hot utility will be smaller. Therefore, 

the average temperature difference in the heat exchanger will be greater, and a smaller unit 

will be enough. Using more hot utility the operating cost increases, but because of the smaller 

heat exchanger, the equipment cost decreases. These two cost effects can result in a decrease 

of the total cost. 

This problem can be solved by using optimisation techniques, because in this case the 

synthesis and the minimization of the total cost are performed simultaneously. For this aim, 

Yee and Grossmann (1990) developed a proper superstructure and MINLP model. The 

superstructure, consisting two hot streams (H1 and H2) and two cold streams (C1 and C2) are 

shown in Fig. 1.10. Streams are driven in a counter-current way. In this case, two temperature 

interval (k=1 and 2) exist in the superstructure. Streams are splitted in each temperature 

interval. In this way, each cold stream can be matched to each hot stream in each interval. 

These possible matchings are denoted with circles. At the end of the intervals the branches of 

the splitted streams are unified, and are driven to the next temperature interval. 

 

 

Figure 1.10. Superstructure of Yee and Grossmann 

 

In the MINLP model, a binary variable represents the existence of a heat exchanger unit in 

each connection. Temperature, heat power and the flowrate of the external streams, are 



1. Literature review 

 

 30

represented with continuous variables. The model involves the heat balance of each heat 

exchanger and each heat interval, the definition of the known temperatures, the calculation of 

the transfer between the hot and cold process streams, the logical constraints, and the 

calculation of the temperature differences at the connections. Only the streams with the same 

temperature are allowed to be mixed; therefore, almost all the equations are linear. Only the 

calculation of the average temperature difference is, and cost function may also be nonlinear. 

Using the MINLP model of Yee and Grossmann, the synthesis of heat exchange networks can 

be performed in one step. Since almost all the equations are linear, finding the global 

optimum has a great chance. 

 

1.4.2. Mass exchanger networks 

Mass exchange networks (MENs) are systems of interconnected direct-contact mass-transfer 

units that use process lean streams or external mass separating agents (MSAs) to selectively 

remove certain components (often pollutants) from rich process streams. In context of the 

overall process, the MEN is usually a part of the separation network. The main function of the 

MENs is to fully exploit the on-site cleaning capacities of the chemical facilities, hence 

MENs achieve environmental protection goals through process integration.  

The first, pinch-based, solution methodology of El-Halwagi and Manousiouthakis (1989) was 

extended by Hallale and Fraser (2000ab). Using the advanced targeting methods of Hallale 

and Fraser, both the capital cost and the total annual cost (TAC) of the network can be 

predicted ahead of any design. Still, pinch technology for mass exchange network synthesis 

(MENS) does not provide with a systematic way for deriving the optimal network structure. 

The network design includes trial and error elements, especially when large or multiple 

component problems are considered. 

Sequential mathematical programming approaches, that are mainly automated versions of a 

pinch design technique, were developed to facilitate the targeting step in case of large 

problems where the graphical approach of the pinch method is not convenient to use (El-

Halwagi, 1997; Grossmann et al., 1999). The attribute “sequential” denotes that the synthesis 

is still decomposed into targeting and design steps. As a consequence, the trade-off between 

investment and operating costs is not taken into account rigorously. 

The first mathematical programming method for mass exchange network synthesis was 

published by Papalexandri and co-workers (1994). The superstructure of their model has the 

following characteristics: 
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• The connection of a rich and a lean stream can correspond to a mass exchanger unit. 

• Every inlet streams are splitted towards the possible mass exchanger units. 

• Two streams can match more than once. In this way the system has more subsystems. 

For example, a pinch point divides the whole concentration interval into to two 

subintervals. But mass transfer should not be performed between these subintervals, 

according to the pinch technology. Therefore, before and after the pinch point, streams 

can have more than one connections. 

• Before each possible mass exchanger units a mixer exists in which the streams from 

the inlet streams and the by-pass streams are mixed. 

• After each possible connection, a splitter exists which split the outlet stream of the 

mass exchanger unit to a stream towards the final mixer, and to by-pass streams 

towards other mass exchanger units. 

 

Rj

zi,j,s

zi,j,s'

zi,j,s

zi,j,s'  
Figure 1.11. Superstructure of Papalexandri and co-workers 

 

In Fig. 1.11 a part of the superstructure is shown, which represent the possible connections 

between rich stream j (Rj) and lean stream i (Li). There are two subsystems in the 

superstructure denoted by s and s’. The existence of the possible mass exchanger units are 

denoted by binary variables yi,j,s. 

An MINLP model has been developed by Szitkai and co-workers (2005), based on the 

analogy between HENs and MENs using the superstructure and model of Yee and Grossmann 
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(1990). Both kinds of networks transport a certain quantity among sources and sinks due to 

the existence of driving forces, as it is shown in Table 1.2.  

 

Table 1.2. Analogy between MENS and HENS 

 MENS HENS 

Transported quantity Mass Heat 
Driving force Concentration difference Temperature difference 

Source Rich process streams Hot process streams 
Sink Lean process streams Cold process streams 

 
Although the existence of an analogy between HENS and MENS is apparent, there are a few 

fundamental differences between the two synthesis problems that have to be considered when 

constructing a mathematical programming model for the synthesis of MENs. These 

differences are the following: 

1. In case of MENS, equilibrium relations between the rich and the lean streams have to 

be taken into account when calculating the driving forces of the mass transfer, or when 

sizing the mass exchangers. 

2. Analogy between HENS and MENS can be drawn only in case of single component 

MENS problems. The heat analogue of multiple components does not exist. 

3. The problem statement of MENS (El-Halwagi, 1997) includes the determination of the 

process lean stream flow rates, while in case of the HENS problem, the cold stream 

flow rates are given a priori. 

4. In case of MENS problems, it makes no sense defining external rich streams. 

 

Resulting from point 1, phase equilibrium calculation is to be added to the mathematical 

programming model of Yee and Grossmann (1990). Point 2 requires the addition of non-

linear component mass balances or necessitates the application of a modelling technique that 

can account for multiple components. Because of point number 3, the lean stream balances 

(flow rates multiplied by concentrations) become non-linear. The analogous constraints, 

representing cold stream balances in the HENS model of Yee and Grossmann (1990) are 

linear. Allowing for point number 4 results in a slightly different superstructure compared to 

that of Yee and Grossmann (Fig. 1.10). 
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1.4.3. Distillation columns 

Distillation is one of the most widespread processes applied for separating multicomponent 

liquid mixtures. It is used for working up great volume; and it requires high investment and 

operation outlays. Therefore, the significance of the design of economically optimal 

distillation processes is of no question. 

Optimising single columns is a well-known procedure; all the basic textbooks outline how to 

do it in an easy manner (Coulson et al., 1985). After approximately determining the minimum 

and the estimated optimal number of theoretical stages, optimising over the continuous 

variables is performed at varied values of the discrete variables. This is a  

2-dimension discrete array of continuous optimisation tasks in the case of a single-feed,  

two-product column, because there are merely two column sections in this case. This task 

becomes much more difficult if several feeds and side-products are to be taken into account. 

The real problem, however, is synthesizing a distillation sequence, or a system of advanced 

distillation columns, or a complex flowsheet containing distillation units, when the number of 

distillation columns and their connections are not known in advance. 

Recent reviews of the topic are Barttfeld et al. (2003), and Grossmann et al. (2005). 

Mathematical formulations that represent rigorous distillation column configuration, fall into 

two categories: (1) one task–one equipment (OTOE) representations and (2) variable task–

equipment (VTE) representations (Yeomans and Grossmann, 1999b). 

In the OTOE representation, each stage has one task to work as an equilibrium stage. If the 

actual stage is not performed in a structure, than the stage is by-passed (Viswanathan and 

Grossmann, 1993ab). Such a superstructure is shown in Fig. 1.12. A boiler is located below 

the lowest stage (1st stage), and a condenser is located above the top stage of the column (Jth 

stage). Binary variables (zj
ref and zj

bu) represent the location of the returning streams after 

condensation and boiling, i.e. the stages where the reflux stream (ref) and the reboiled vapor 

stream (bu) are led to, beside the feed location. If zj
ref=1, then the reflux stream is led to the jth 

stage. Similarly, if zj
bu=1, then the reboiled vapor stream is led to the jth stage. Stages above 

the reflux stream location and below the reboiled vapor stream location are considered non-

existing stages; whereas all the other stages exist. The MINLP model involves the total and 

component mass balances, the enthalpy balances, and the equations of the physical-chemical 

equilibrium, at each stage. 
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1

2

bu

ref

J-1

J

jrmin

jfeed

jbmax

 
Figure 1.12. Superstructure of Viswanathan and Grossmann 

 

In the OTOE approach, there are three main different arrangements (Barttfeld et al., 2003): (1) 

The feed location is fixed, and the stages where the boil-up and reflux flows enter the column 

are variables. (2) The position of the feed and the reflux inlet are variable, whereas the boil-up 

location is fixed. (3) The location of the feed and the boil-up streams are variables, and the 

inlet point of the reflux is fixed. The first arrangement is shown in Fig. 1.12. 

In the VTE representation, each stage has two tasks: (1) an equilibrium stage, or (2) an input-

output operation in the stage with no mass transfer. Logical or binary variables assign which 

task of a stage is performed in a structure (Yeomans and Grossmann, 2000ab). 

 

OR

equilibrium
stage

non-equilibrium
stage

 
Figure 1.13. Superstructure of Yeomans and Grossmann  
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 (1.9) 

 
In the superstructure of Yeomans and Grossmann (2000a) the location of the feed stage, of the 

condenser, and of the reboiler are fixed (Fig. 1.13). In the GDP representation if the logical 

variable Zj is true then the jth stage works as an equilibrium stage. In this case the liquid and 

vapor fugacities are calculated, they are equal, and the concentration of the outlet streams 

depend on the physical-chemical equilibrium (Eq. 1.9). If the logical variable Zj is true, then 

there is no mass transfer in the jth stage, and the streams flow through unchanged. 
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2. Challenges and scope of the thesis 
Mathematical programming with MINLP formulation is a widespread approach in process 

synthesis.  

Mainly the last two steps of mathematical programming, namely the formulation of the 

MINLP representation, and the solution of this model, are studied in the literature. The 

MINLP models are formulated in a way that it can be solved easily using one of the 

optimisation algorithms. Grossman (1996) defined three major guidelines of a „good” MINLP 

representation:  

1. Keep the problem as linear as possible.  

2. Develop a formulation whose NLP relaxation is as tight as possible.  

3. If possible, reformulate the MINLP as a convex programming problem.  

Multiplicity causes great problems in MINLP models. Multiplicity means that several 

solutions of the mathematical representation define the same structure. It can also be said that 

a structure is represented by isomorphic graphs. In this case, the objective function has the 

same value in several points. It makes more difficult finding the optimum, and the search 

space is unnecessarily big. Multiplicity is usually decreased in the second step of the 

mathematical programming, and the MINLP model is formulated in a way to have as low 

multiplicity as possible. However, in some cases, even the graph representation of the 

superstructure can be generated in a way to exclude isomorphic graphs. 

An important characteristic of an MINLP model is the number of binary variables. With 

increasing number of binary variables, the complexity of the problem and the solution time 

increase exponentially. An MINLP model can be reformulated to decrease the number of 

binary variables by introducing new continuous variables and constraints. However, it would 

be more expedient to generate the graph representation of the superstructure in a way that the 

decrease of the number of binary variables is considered. 

 

During my PhD study, I mainly dealt with the first step of the mathematical programming, the 

generation of the superstructure and its graph representation, and with the connection of this 

step to the other ones.  

First I studied the use of earlier experience during the solution of a new synthesis problem. I 

applied a knowledge based method, case-based reasoning, in the generation of the proper 

superstructure with MINLP representation in distillation column synthesis.  
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Then I studied in details the connection between structures and graphs. I defined when an 

MINLP model represents a structure, and what the reasons of multiplicity are. I gave 

guidelines for how the multiplicity, and the number of binary variables of an MINLP 

representation, can be decreased in order to narrow the search space, to enhance the 

possibility of finding the global optimum, and to decrease the solution time. 

Finally, I used my results and experience to develop a new superstructure and MINLP model 

for distillation column synthesis. 
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3. Case-based reasoning in mathematical programming 
The first step of mathematical programming, generation of the superstructure, always requires 

engineering experience. Even in the combinatorial method of Friedler and co-workers 

(1992ab, 1993), the engineer has to select the set of units from which the superstructure will 

be generated. After generating the superstructure, the formulation of the mathematical model 

which exactly represents the superstructure is also a difficult task. Finally, in case of an 

MINLP model, the found optimum strongly depends on the initial point; therefore, it is worth 

to start the optimisation from a near optimal point.  

To overcome these difficulties it seems evident to use the earlier experience in case of a new 

problem. For this aim, the best methods are perhaps the knowledge based methods. Among 

the knowledge based methods, I have chosen case-based reasoning to study the possibility its 

combination with mathematical programming because complex problems can be formulated 

easily in this method, and other techniques of process synthesis can be easily adopted and 

incorporated. In case-based reasoning, the most similar case to an actual problem is retrieved 

from a case library, and the solution of this case is used to solve the actual problem. Finally, 

the solution of the problem is stored in the case library for future use.  

In this chapter I study the use of case-based reasoning for the generation of the superstructure 

in distillation column synthesis. The content of this chapter has been published in the paper 

Farkas et al. (2005a). 

 

3.1. Problem statement 

The problem addressed in this chapter is as follows. There is given an ideal mixture of 

components that is to be separated, by distillation, into a number of products of the specified 

composition. The goal is to propose a proper superstructure and an MINLP model to 

synthesize a sequence of distillation columns. The superstructure must include an initial 

structure for the design optimisation. As a realization of the data base of previously solved 

problems (a case library) has been created, and an efficient retrieval method which identifies 

the most similar case to the actual problem has been developed.  

Pajula and co-workers (2001) developed a case-based reasoning method for the selection of 

single separations. Seuranen and co-workers (2005) further developed this approach for the 

synthesis of complex separation sequences.  

According to my knowledge, this is the first case when case-based reasoning combined with 
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mathematical programming is used in distillation column synthesis. In order to simplify the 

study on the usability of case-based reasoning, the problem is restricted for ideal mixture 

separation cases. However, according to my opinion, the method can be further developed, for 

example to consider cases with azeotropic mixtures, as well. 

The library of cases is built based on the detailed distillation examples with reproducible 

MINLP models published in the papers Aggarwal and Floudas, 1992; Viswanathan and 

Grossmann, 1993ab; Novak et al., 1996; Yeomans and Grossmann, 1999b; Caballero and 

Grossmann, 1999; Yeomans and Grossmann, 2000ab; and Caballero and Grossmann, 2001. 

The case library contains 26 cases of separation of ideal mixtures for up to five components.  

 

The retrieval of the most similar cases to a new problem consists of the analysis of 

characteristics of feed, required products, operational parameters, and their comparison with 

the analogical properties of a problem under consideration. 

As a solution, the superstructure and MINLP models of the most similar cases are suggested 

and theirs optimal flowsheets, which can be used as an initial point for optimisation. 

 

3.2. Implementation of case-based reasoning method 

The computer implementation of CBR is composed of three main parts: (1) case library; (2) 

retrieval method; and (3) adaptation. 

 

3.2.1. Case representation 

According to stated goal, a case must contain a superstructure with an applicable MINLP 

model, which can be used in design and optimisation to find the optimal structure and 

operational parameters. The case description is supplemented by a particular solution that can 

be used as an initial approximation in finding the optimal solution. 

 

MINLP model with superstructure 

The case library includes only cases with reproducible MINLP models. The representation of 

a model involves the superstructure, the set of variables and parameters, the mass and 

enthalpy balances and other constraints. However, usually only the superstructure, the 

variables and the main equations are detailed in the source articles, e.g. the equilibrium 

models and the basic mass balances are not represented. The articles contain the hints and 
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notes, which can help in using of a model. To provide the instructions for the use of MINLP 

model the original articles have been included in the case library as PDF files. 

 

Solution of source cases 

Usually the search space and the equations of MINLP models are strongly non-convex, so the 

identified optimum strongly depends on the starting point of the calculations. The solution of 

a similar problem is given as an initial in optimisation to increase greatly the probability to 

find the global optimum. The papers report usually a flowsheet supplemented with a dataset 

as a solution for a problem. The case library contains the flowsheet and their mathematical 

representation. 

A flowsheet is represented as a graph. An example of graph representation of a flowsheet 

(Fig. 3.1, Yeomans and Grossmann, 1999b) is shown in Fig. 3.2. In this graph the nodes are 

the feed (F1), the distillation columns (C1, C2,…), the heat-exchangers (condensers: 

Con1, …; and reboilers: Reb1, …), the mixers/splitters (MS1, MS2, …) and the products (P1, 

P2, …); the edges are the flows between the units. This graph can be represented in matrix 

form (node-node matrix, Table 3.1). In this matrix aij=1 if there is connection from node i to 

node j, aij=0 otherwise. 

 

 
Figure 3.1. Example of flowsheet (Fig. 5 in Yeomans and Grossmann, 1999b) 
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Figure 3.2. Graph representation of flowsheet 

 

Many flows are supplemented with attributes such as temperature, flow rate, composition. 

Such flows have the captions (e.g. S1, S6b) in the graph. These flows are represented in 

separate edge-node matrix (Table 3.2), which contains the starting and ending nodes of the 

flows. 

 

Table 3.1. Node-node matrix 

 F1 C1 C2 C3 Con1 Con2 Reb1 Reb2 Reb3 MS1 MS2 MS3 MS4 MS5 MS6 P1 P2 P3 P4 
F1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
C1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
C2 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 
C3 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 
Con1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Con2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Reb1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
Reb2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Reb3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MS1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
MS2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
MS3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
MS4 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
MS5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
MS6 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 
P1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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In the graph representation only simple columns are used, with maximum three inputs and 

two outputs. In case of thermally coupled flowsheets a possible rearrangement of the complex 

columns is used (see details in Example 3.1). If two flows between two columns have reverse 

direction then these flow pairs is called ”thermally coupled”. The thermally coupled complex 

columns are represented as composed of two parts – upper and lower separate columns.  
 

Table 3.2. Edge-node matrix 

 F1 S1 S2a S2b S3 S4 S5 S6a S6b S7 S8 
start F1 MS1 MS2 Reb1 MS2 MS3 MS4 C3 Reb1 MS5 MS6 
end C1 P1 Reb1 C1 C2 P2 C3 Reb1 MS5 P3 P4 

 

The solution is represented by the graph (Fig. 3.2), the node-node matrix (Table 3.1) and the 

edge-node matrix (Table 3.2) as well as the detailed data of units and flows, such as: 

 

distillation columns - number of trays 

 - diameter [m] 

 - input/output trays 

 - pressure [bar] 

 - reflux ratio 

heat exchangers - area [m2] 

 - heat flowrate [MW] 

 - utility 

flows - temperature [K] 

 - flowrate [kmol/h] 

 - set of components  

 - mole fraction of components 
 

In case of heat integrated columns the flows go through heat exchangers. Heat exchanger 

changes the temperature and physical condition of the flow. However, the rate of temperature 

changing is unknown. Therefore, these flows are marked with the same number, and 

distinguished with small letters (S2a, S2b,…), but only the data of the flow before heat 

exchanger are reported. 
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3.2.2. Case retrieval 

During retrieval an actual problem is matched against previous ones from the case library, and 

the most similar problem is retrieved. The solution of the retrieved problem is used next in 

optimisation. The actual problem, which has to be solved, is the target case; and the solved 

problems with their solutions are the source cases.  

First the case base is analyzed by induction method to classify the cases. One class of cases 

corresponding to the actual problem build retrieved set of cases. Next, the cases in the set are 

ranked according to their similarities to the target case using nearest neighbour method. 

 

Inductive retrieval 

Using a set of classification attributes the cases are grouped into clusters. The clusters are 

characterised by the following values of attributes: 

Separation: sharp; non-sharp. 

Heat integration: structure without heat integration; structure with heat integration; thermally 

coupled structure. 

In the single column configuration only non-heat integrated structure is possible. 

Number of products: 2; 3-5.  

This attribute is considered because a model for single column configuration does not include 

the mass balances for the connection of distillation columns; thus, such model cannot be used 

for problem of separation of three or more products.  

Feed type: single; multiple.  

This attribute is considered because of the dissimilarity between the MINLP models with 

single and multiple feeds. 

 

The cluster of cases corresponding to actual problem (that has the same values of 

classification attributes) is retrieved for next step – nearest neighbour method. 

 

Nearest neighbour retrieval 

The nearest neighbour method is used to calculate the similarity between the target case and 

the source cases from the set of similar cases retrieved by inductive method. The evaluation of 

the global similarity between the target and a source case is based on the computation of the 

local similarities. The local similarities deal with a single attribute, and take the value from 

the interval [0;1]. The global similarity can be derived from the local similarities as: 
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where wa is the weight of importance of attribute a; sima is the local similarity between values 

of attribute a of the target (T) and the source case (S); na is the number of attributes. The 

weights of importance take integer value from 1 to 10 according to the actual requirements, 

where weight value 10 determines the most important attribute.   

The similarity between component sets is very important and has to be applied first. It has to 

be determined which component in the source case corresponds to certain component in the 

target case. In simplest case, the sets of components of the target and the source case are 

identical. Otherwise the most similar sequence of components has to be determined, and 

identical components often do not create the corresponding pairs. For instance, the 

components set of the target case (Yeomans and Grossmann, 2000a) is n-butane; n-pentane; 

n-hexane. The components set of the source case (Yeomans and Grossmann, 2000b) is  

n-pentane; n-hexane; n-heptane. The n-pentane and n-hexane components are present in both 

cases, and it seems to be evident to assign them to each other in the target and in the source 

cases. Then the third pair of the components would be n-butane (target case) – n-heptane 

(source case). However, there is a problem with this assignment thanks to the fact that  

n-butane in the target case is the most volatile component, while n-heptane, the pair of n-

butane in the source case, is the less volatile component. Thus, the solution of the source case 

cannot be used for the solution of the target case. 

To overcome these difficulties, during matching of the components the primary assumption is 

the volatility order of the components, and the second is the nature of the components. The 

component pairs in previous example are n-butane – n-pentane; n-pentane – n-hexane;  

n-hexane – n-heptane. In this case the solution of the source case can be used to solve the 

target case. 

 

In order to calculate the similarity five attributes are used: components, boiling points of 

components, molar masses of components, feed and product composition (mole fraction). 

Components. It is a non-numeric attribute. The similarity of components is based on theirs 

chemical structure. The similarity tree, which includes all components in the case library 

(Fig. 3.3), has been built. In the similarity tree, the nodes represent the basic groups of 

chemical components. To each component group a numeric similarity value was assigned. 
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The similarity value of two components is the value of the nearest common node in the tree. 

For example when comparing n-butane and methanol the nearest common node is the 

’organic’ node, therefore the similarity value is 0.2. The more similar the components the 

greater is the similarity value between them. For the identical components the similarity value 

is 1. 

 

components 0

inorganic 0,1
- water

organic 0,2

hydrocarbon 0,6 alcohol 0,7
- methanol

aromatic 0,5
- benzene
- toluene
- o-xylene
- diphenyl

keton 0,3
- acetone

nitrile 0,4
- acetonitrile

paraffinic 0,8
- propane
- n-butane
- iso-butane
- n-pentane
- n-hexane
- n-heptane
- n-octane
- n-nonane

unsaturated 0,8
- methylacetylene
- tarns-2-butene
- cis-2-butene

 
Figure 3.3. Similarity tree of components 

 

It may happen that the cases with different numbers of products are compared. In this case 

there are components in one set, which have no corresponding components in another set. For 

these matchless components the nearest common node is the ”components” node, therefore, 

the similarity value is 0 (see Example 3.2). 

The local similarity of the components (simc) is defined as the average of the similarity values 

between the components: 

c

n

i
i

c n

sc
sim

c

∑
== 1   (3.2) 

where sci is the similarity value of the components from the similarity tree; nc is the maximal 

number of components in the compared mixtures. 

As now only problems containing ideal mixtures are considered in the case library, this type 

of comparison of components, based only on the chemical structure of the components, is 

suitable. In the later phase of development also problems containing azeotropic mixtures 
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could be introduced to the case library, and the comparison of components can be further 

developed. Then the mixtures will be grouped according to what kind of and how many 

azeotropes are in the system, or the local similarity will be calculated based on a group 

contribution method. 

Boiling point and molar mass of components. These attributes are numeric. In such case, the 

similarity of the attributes is calculated utilizing simple distance approach: the shorter a 

distance between two attribute’s values the greater the similarity is. For the greater sensitivity 

not the original values are used, but normalized ones from interval [0;1]. The normalized 

values are defined for boiling point (tb) and molar mass (m) as: 
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where Tb,min is the smallest boiling point; Tb,max is the highest boiling point; Mmin is the 

smallest molar mass; Mmax is the greatest molar mass in the case library. 

The local similarities for these attributes are defined as: 
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where ∆tb,i is the difference of the normalized boiling points; ∆mi is the difference of 

normalized molar masses; nc is the maximal number of components. 

In case of the different numbers of components of compared cases for matchless component 

the difference of boiling points (∆tb,i) or molar masses (∆mi) is the matchless component’s 

normalized boiling point or normalized molar mass (see more Example 3.2). 

Feed and product compositions. These are also numeric attributes that are vectors. Comparing 

vector attributes the length of distance vector d, is determined. 
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where T is the attribute vector of the target case; S is the attribute vector of the source case. 

In case of the different numbers of components of compared cases zero elements are added to 
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the shorter vector in order to have the same number of elements in the compared vectors (see 

more Example 3.2). 

Because there are a number of product composition vectors, the difference vector and the 

distance are calculated for every product pair. The method is analogical for the problems with 

multiple feeds. The local similarity of feed compositions (simf) and product compositions 

(simp) are defined as: 
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where nf is the number of feeds; np is the number of products; ei are the basis vectors in the 
cnR  space (necessary for normalization). 

Other attributes can also be considered according to the actual requirements. The calculation 

of similarity for other numeric or vector values is performed in the same way. 

 

Using the nearest neighbour method the cases of the set, retrieved by inductive method, are 

ranked, and the solution of the most similar case is found. The MINLP model with the 

superstructure and the optimal solution of the source case are suggested. Usually the chosen 

solution has to be adapted in order to meet the actual requirements. 

 

3.2.3. Adaptation 

The three most similar cases are reported as potential solutions, and according to the actual 

requirements and engineering experience the most useful model is chosen. Because of the 

complexity of the distillation problems there is no automatic adaptation of the found solution. 

The task of the designer is the modification of the MINLP model and the reuse of the solution 

of the chosen case as an initial point for design and optimisation.  

 

3.3. Examples 

In this section three examples are presented to illustrate the mathematical representation of a 

solution of a case, the retrieval method and problem solving. Example 3.1 shows the 
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mathematical representation of a thermally coupled structure, how to rearrange the 

configuration of complex distillation columns. Example 3.2 illustrates the retrieval, the 

comparison of a target and a source case. The nearest neighbour method is applied to the case 

with the different number of components and feeds. The solving of a new problem is 

presented in Example 3.3. 

 

3.3.1. Example 3.1. 

As it was mentioned in subsection 3.2.1, a flowsheet is represented as a graph. The nodes of 

the graph are the units (columns, condensers, reboilers and mixers/splitters), the feeds and the 

products; the edges are the streams connecting the units. This graph is represented also with a 

node-node matrix and an edge-node matrix.  

Only simple distillation columns with maximum three input and two output streams can be 

used in the graph. In the case of thermally coupled solution a possible rearrangement of the 

flowsheet could also be represented in the graph. An example for this rearrangement is shown 

below. 

 
Figure 3.4a. Flowsheet of Example 3.1 (Fig. 5e in Yeomans and Grossmann, 2000b) 

 

The examined flowsheet (Yeomans and Grossmann, 2000b) is presented in Fig. 3.4a. There 

are two columns, a simple column (without heat exchanger) and a complex column. The 

simple column meets our requirements of the mathematical graph representation. However, 

the complex column has three outputs, therefore, it has to be splitted into two simple columns 

(Fig. 3.4b). Between these two columns there are interconnection streams in both directions, 
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but one of these streams is broken with a splitter. The node-node matrix and the edge-node 

matrix of the graph are given in Table 3.3 and Table 3.4. 

 

C2

P1

Con2

MS1 S3

C3

MS3

P3

S2

Reb3

C1F1 F1 MS2 P2S4

S5

S1

 
Figure 3.4b. Graph representation of flowsheet of Example 3.1 

 

Table 3.3. Node-node matrix of Example 3.1 

 F1 C1 C2 C3 Con2 Reb3 MS1 MS2 MS3 P1 P2 P3 
F1 0 1 0 0 0 0 0 0 0 0 0 0 
C1 0 0 1 1 0 0 0 1 0 0 0 0 
C2 0 1 0 0 1 0 0 1 0 0 0 0 
C3 0 1 1 0 0 0 0 0 1 0 0 0 
Con2 0 0 0 0 0 0 1 0 0 0 0 0 
Reb3 0 0 0 1 0 0 0 0 0 0 0 0 
MS1 0 0 1 0 0 0 0 0 0 1 0 0 
MS2 0 0 0 1 0 0 0 0 0 0 1 0 
MS3 0 0 0 0 0 1 0 0 0 0 0 1 
P1 0 0 0 0 0 0 0 0 0 0 0 0 
P2 0 0 0 0 0 0 0 0 0 0 0 0 
P3 0 0 0 0 0 0 0 0 0 0 0 0 

 

Between the first column (C1) and the second column (C2) there are two streams (the 

situation is the same between the first and the third column). These streams can be regarded 

as outputs/inputs from or to the column, but also as a reflux in the first column. These kinds 

of streams, which have neighbour of reverse direction, are called thermally coupled streams. 

In Fig. 3.4b, the marked streams S1 and S2 are examples of such streams (see Table 3.6). The 

S1 stream is regarded as an output from the first column, and an input to the second column 

(see Table 3.5). 
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Table 3.4. Edge-node matrix of Example 3.1 

 F1 S1 S2 S3 S4 S5 
start F1 C1 C1 MS1 MS2 MS3
end C1 C2 C3 P1 P2 P3 

 

The complex column is splitted into two simple columns connected by thermally coupled 

streams. One of these streams is broken with a splitter, from which a product stream (S4) 

starts. This stream can be regarded as a product of a second and the third column. In the graph 

representation such a stream is regarded as the bottom product of the column (see Table 3.5). 

 

Table 3.5. Units of Example 3.1 

 Column 1. Column 2. Column 3. 
number of trays 31 9 9 
feed F1 S1 S2 
feed tray* 21 4 8 
top product S1 S3 - 
bottom product S2 S4 S5 
reflux ratio  9.72  
condenser utility - cold utility - 
condenser heat flowrate (MW) - 32.167 - 
reboiler utility - - hot utility 
reboiler heat flowrate (MW) - - 33.907 
* trays are counted from bottom up 

 

Table 3.6. Streams of Example 3.1 

 Main component(s) Flowrate (kmol/h) Composition Type 
F1 ABC 1000 (0.20; 0.50; 0.30) normal 
S1  732  therm. coupl. 
S2  549  therm. coupl. 
S3 A  (0.971; -; -) normal 
S4 B  (-; 0.899; -) normal 
S5 C  (-; -; 0.901) normal 

 

In the case of thermally coupled flowsheets the complex columns are separated into simple 

columns with maximum two outputs. The internal streams of the earlier complex column are 

always regarded as outputs of the columns above the actual stream. The pair of streams with 

reverse directions from one column to another are marked as thermally coupled streams. 

However, these streams are regarded as normal streams. 
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3.3.2. Example 3.2 

To illustrate the retrieval method only the comparison of two cases are described. 

The target case (Viswanathan and Grossmann, 1993a) is a benzene, toluene, o-xylene system, 

the source case (Viswanathan and Grossmann, 1993a) is a methanol, water system. The 

descriptions of the cases are presented in Table 3.7. 

The target case is sharp separation without heat integration; there are two products and 

multiple feed. The source case has the same values of classification attributes, hence, it 

belongs to the cluster of the target case. 

 

Table 3.7. Descriptions of target and source cases of Example 3.2 
 Target case Source case 

system benzene–toluene–o-xylene methanol–water 

condenser type total total 

reboiler type kettle type kettle type 

estimated maximum number 

of trays 
40 60 

feed 1 

TFeed1 =50. TF ,
1x =(0.15; 0.25; 0.60) 

TFP ,
1 =1.2 bar. TFT ,

1 =411.459 K. 

TFq ,
1 =0.1 

SFeed1 =43.5. SF ,
1x =(0.15; 0.85) 

SFP ,
1 =1.42 bar. SFT ,

1 =365.0 K. 

SFq ,
1 =0.0 

feed 2 

TFeed2 =50. TF ,
2x =(0.55; 0.25; 0.20) 

TFP ,
2 =1.2 bar. TFT ,

2 =390.387 K. 

TFq ,
2 =0.0 

SFeed2 =29.5. SF ,
2x =(0.50; 0.50) 

SFP ,
2 =4.8 bar. SFT ,

2 =392.697 K. 

SFq ,
2 =0.0 

feed 3 – 

SFeed3 =27.0. SF ,
3x =(0.89; 0.11) 

SFP ,
3 =1.38 bar. SFT ,

3 =347.797 K. 

SFq ,
3 =0.0 

pressures 
PR,T=1.2 bar. PB,T=1.20 bar.  

PD,T=1.10 bar. PC,T=1.05 bar 

PR,S=1.4475 bar. PB,S=1.44064 bar. 

PD,S=1.0408 bar. PC,S=1.0340 bar 

purity constraint on top 

product 
≥Tx 1,45 0.999 ≥Sx 1,60 0.999 

purity constraint in bottom 

product 
≥+ TT xx 3,12,1 0.999 ≥Sx 2,1 0.999 

upper bound of reflux ratio 2 20 

 

Before the use of nearest neighbour formula, the corresponding pairs of components have to 

be identified. The primary assumption is the volatility order of the components. The data of 
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the components are given in Table 3.8. According to the boiling points the most similar 

component to benzene is methanol in the source case, and the second component pair is the 

toluene – water. The o-xylene has no pair, because there are different numbers of products in 

the target and the source cases. 

Comparing the identity of components similarity for the benzene–methanol pair the nearest 

common node in the similarity tree (Fig. 3.3) is the ‘organic’ node (sc1=0,2), for the toluene–

water pair is the ‘components’ node (sc2=0). The o-xylene has no pair, therefore, for this 

component the nearest node is the ‘components’ node, the similarity value is sc3=0. The local 

similarity value of components (simc) is the average of those similarity assessments 

(Table 3.9). 

 

Table 3.8. Boiling and molar masses of the components of Example 3.2 

 Tb, boiling 
point (K) 

tb, normalized 
boiling point 

M, molar mass 
(g/mol) 

m, normalized 
molar mass 

benzene 353.2 0.371 78 0.472 
toluene 383.8 0.481 92 0.583 
o-xylene 417.6 0.603 106 0.693 
methanol 337.9 0.316 32 0.110 
water 373.15 0.443 18 0.000 

 

Table 3.9. Comparison of boling point and molar mass of components of Example 3.2 

 sci ∆tb,i (K) ∆mi (g/mol) 
benzene–methanol 0.2 0.055 0.362 
toluene–water 0 0.038 0.583 
o-xylene 0 0.603 0.693 
local similarity values simc=0.067 simt=0.232 simm=0.546 

 

To determine the local similarity values of boiling points and molar masses first the 

differences of the component pairs are determined. In the case of o-xylene, which has no pair 

from the source case, the differences are its own normalized values (∆tb,i=tb,i; ∆mi=mi). The 

local similarity values are the average of the differences of component pairs (Table 3.9). 

The purity requirements are not considered when comparing the products but the 

concentrations of the components in the required products. It is necessary because in non-

sharp separations there are no purity requirements, the exact composition of the products are 

used instead. Therefore, the required product compositions have to be given also for the sharp 

separations. For example in the target case, only the minimum mole fraction of the benzene of 

the top product is known ( ≥Tx 1,45 0.999), therefore the concentration of the components in the 
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required product is T
px 1, =(0.999; 0; 0). This is not really product composition because it does 

not fulfil the requirement that the sum of mole fractions is 1. It is rather the minimal mole 

fraction of each component in the product. Therefore, the compared products are: 
T
p 1,x =(0.999; 0; 0) – S

p 1,x =(0.999; 0; 0) 

T
p 2,x =(0; 0; 0) – S

p 2,x =(0; 0.999; 0)  (3.10) 

 

In the second product of the target case all the mole fractions are zero, because the constraint 

≥+ TT xx 3,12,1 0.999 is uncertain. The third zero mole fraction is added to the product vector of 

the source case in order to have the same number of elements of compared vectors. 

The products are matched by minimizing the difference between the product component 

vectors. Therefore, in this case the product pairs are T
p 1,x – S

p 1,x  and T
p 2,x – S

p 2,x . For every 

product pair the difference between the product composition vectors is calculated: 
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The local similarity value of product compositions is: 
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The similarity of the feed compositions is calculated analogically as for the product ones. In 

order to have the same number of elements of vectors, a third zero element is added to the 

feed compositions of the source case. The number of feeds in source cases is greater than in 

the target case, therefore, a third feed with zero elements is considered in the target case. 

When matching the feed also the primary objective is the minimal difference, thus, the feed 

pairs, and the distance between the feed composition vectors are: 
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The local similarity value of feed compositions is: 
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The weights of importance for local similarities have to be assigned before using Eq. 3.1. The 

weights have values from 1 to 10. The more important an attribute the greater the value of the 

weight is. A possible set of weights is shown in Table 3.10. 

 

Table 3.10. The weights of importance for Example 3.2 

Attributes Weights 
Quality of components 10 
Composition of required products 7 
Boiling point of components 4 
Composition of feeds 3 
Molar mass of components 1 

 

The global similarity is calculated as follows: 
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In the above example the comparison of two cases has been presented. First, the components 

were matched according to the volatility order and the boiling points. The local similarity of 

the components was calculated applying the values obtained from the similarity tree. The 

distance between the boiling point and the molar mass of the components were calculated; for 

the matchless component the differences were its normalized values. During the 

determination of the local similarities of products and feeds a third zero element was added in 

the source case compositions, in order to have the same number of elements of vectors, and a 

third feed was considered as 0 vector to the target case, in order to have the same number of 

feeds. A set of importance weights was assessed, and the global similarity was calculated. 

 



3. Case-based reasoning in mathematical programming 

 

 55

3.3.3. Example 3.3 

Third example presents the application of the method to a new distillation problem. 

There is given a heptane-toluene mixture. The flowrate of the equimolar [0.5, 0.5] feed is 

100 kmol/h. The target is to separate the mixture into pure components with 95% purity 

requirement at the top and at the bottom. 

It is a sharp separation problem and single column configuration should be used. It means that 

the searched structure is not heat integrated. There are one feed and two products. Applying 

the inductive retrieval, the set composed of four source cases has been determined in the case 

library. Next, the global similarity is calculated for the target case and for all the source cases 

using the nearest neighbour method. As a result, the product compositions of the target case is 

[0.95, 0] at the top, and [0, 0.95] at the bottom. When it is required, a zero element is added to 

the composition vector.  

 

Table 3.11. Nearest neighbour retrieval (Example 3.3) 

 source case 1 source case 2 source case 3 source case 4 
problem 
published 
originally 

Viswanathan and 
Grossmann (1993a) 
Example Ternary 1 

Viswanathan and 
Grossmann (1993a) 
Example Ternary 2 

Viswanathan and 
Grossmann (1993a) 

Example Unit 

Yeomans and 
Grossmann (2000a) 

Example 1 

system 
benzene 
toluene 

o-xylene 

benzene 
toluene 

o-xylene 

acetone 
acetonitrile 

water 

benzene 
toluene 

simc 0.400 0.400 0.133 0.600 
simt 0.777 0.777 0.767 0.967 
simm 0.711 0.711 0.756 0.913 
simp 0.329 0.713 0.714 0.650 
simf 0.822 0.822 0.714 0.833 
SIM 0.503 0.611 0.492 0.713 

 

According to the nearest neighbour method (see Table 3.11) the most similar case is a 

benzene-toluene problem (Yeomans and Grossmann, 2000a). In the design and optimisation 

of the target case the superstructure and the MINLP model of this most similar case is 

suggested to use. Here the use of the first and the second case is shown. As the third case uses 

the same MINLP model as the second one (Viswanathan and Grossmann, 1993a) during the 

optimisation only the initial point would be different. Therefore, the use of the third case is 

not studied here. 

The models have to be adapted according to the actual requirements of the target case. The 

adaptation has two main steps: (1) adaptation of the model; and (2) adaptation of the solutions 

of the source cases as initial point. 
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The adaptation of the MINLP model is based on the assumptions used during the 

optimisation. The column pressure assumed to be constant; therefore, the equations of the 

pressure profile in the model of Viswanathan and Grossmann (1993a) are omitted. Constant 

molar overflow is assumed; therefore, the enthalpy balances and enthalpy calculations are 

omitted, and other equations are used instead which force the total vapor and liquid flows to 

be constant in each column section. The fugacities are calculated according to the Raoult-

Dalton equation: 

c
V

c yPf ⋅= , (3.16) 

)(0 Tpxf cc
L

c ⋅= , (3.17) 

where V
cf  is the vapor fugacity [Pa]; P is column pressure [Pa]; yc is vapor mole fraction [-]; 

L
cf  is the liquid fugacity [Pa]; xc is liquid vapor mole fraction [-]; and pc

0(T) is vapor pressure 

[Pa], all belonging to component c. Vapor pressure pc
0(T) is calculated with Antoine equation: 
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where Ac, Bc and Cc are the Antoine constants of component c. The applied model parameters 

(Gmehling et al., 1977) are collected in Table A.1 in the Appendix. 

As the heptane – toluene mixture has lower relative volatility than the mixtures of the source 

cases, the maximum number of trays in the column is increased to 80. 

According to our earlier experiences the numerical characteristics of this kind of models can 

be improved by adding monotony constraints to the model. Therefore, concentration and 

temperature monotony constraints are given to the MINLP models which do not spoil the 

generality of the models. 

The cost function is also modified according to the actual requirements. The following cost 

function is applied (Luyben and Floudas, 1994):  

paystcondCWvapLPStax DCNVHcHcTAC ββ /),(f)( +∆⋅+∆⋅=  (3.19) 

)5.17.0(245])76.06(486324615[3.12),(f 22 DCNDCNDCDCN ststst +++++=  (3.20) 

where βtax is the tax factor (=1.18); cLPS is the cost of the low pressure steam (= 3.54 · 10–4 

USD/kJ); cCW is the cost of the cooling water (= 2 · 10–7 USD/kJ); ∆Hvap is the latent heat of 

vaporization (= 33773 kJ/kmol); ∆Hcond is the latent heat of condensation (= 31828 kJ/kmol); 

V is the vapor flowrate at the bottom [kmol/yr]; βpay is the payback period (= 15 yr); Nst is the 

number of equilibrium stages in the column; DC is the column diameter [m]. 
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The column diameter is calculated from the cross section of the column (A, [m2]): 

π
ADC 2=  (3.21) 

The cross section of the column is determined by the flowrate of the vapor stream and the 

density of the vapor in the reboiler, using the Ff –procession (Kister, 1992): 

Vmax

V

F
mA

ρ

•⋅

=  (3.22) 

where Vm
•⋅

 is the amount flowrate of the vapor [kg/s]; Fmax is the F-factor (= Pa2.2 ); and ρV 

is the density of the vapor [kg/m3]. 

The solution of the source case is used to give initial state in the design and optimisation. In 

the solution of the most similar source case (Yeomans and Grossmann, 2000a) the number of 

trays was 55, the reflux ratio was 1.77, and the column diameter was 0.56 m (=1.84 ft). As in 

our case the feed is different from the feed of the source case (100 kmol/h instead of 150 

kmol/h), the values of these quantities are modified in the initial state. Because of the lower 

relative volatility of our mixture the reflux ratio and the column diameter are increased to 

double (3.54 and 1.12 m, respectively) using the same number of trays (55) in the initial state. 

An initial column profile is calculated dividing the mole fraction interval between the purities 

of distillate and bottom product into the same number of intervals as the number of trays. The 

initial temperature profile of the column is calculated similarly. The initial value of all the 

other variables is calculated from these initial values using the model equations. 

In the solution of the second most similar source case (Viswanathan and Grossmann, 1993b) 

the number of trays was 25, the reflux ratio was 9.01, the flowrate of the distillate was 15 

kmol/h, and the flowrate of the bottom product was 85 kmol/h. In this solution low number of 

trays is used with very high reflux ratio, therefore, in the initial state of the new problem the 

number of trays is double (50), and the reflux ratio is half (4.50) as in the solution of the 

source case. In our problem the purity requirements in the distillate and in the bottom product 

for the main component are the same, therefore, the initial value of the distillate and the 

bottom product are the same, 50 kmol/h. An initial column profile for concentrations and 

temperature is calculated by the same way as in the first case. 

 

The adapted MINLP model is solved by GAMS DICOPT++ (Brooke et al., 1992) on a Sun 

Sparc Station. The results of both MINLP models are presented in Table 3.12.  

 



3. Case-based reasoning in mathematical programming 

 

 58

Table 3.12. Results of Example 3.3 

Model Yeomans and 
Grossmann (2000a) 

Viswanathan and 
Grossmann (1993a) 

objective (USD/yr) 3 066 973 3 121 234 
number of trays 63 73 
feed location (from bottom) 30 38 
column diameter [m] 1.51 1.50 
reflux ratio 4.22 4.18 

 

The results are checked with ChemCAD 5.2 simulator fixing the parameters given in 

Table 3.12. For the solution of the model of Yeomans and Grossmann (2000a) the purity of 

the distillate is 0.9408, of the bottom product is 0.9444. For the solution of the model of 

Viswanathan and Grossmann (1993a) the purity of both products are 0.9407.  

It can be seen, that in this case the MINLP model of the most similar source case found better 

solution than the model of the second most similar source case. 

 

3.4. Summary 

In this chapter the application of case-based reasoning method is presented for finding 

superstructure with an MINLP model, and a solution of the corresponding distillation 

synthesis problem by suggesting an initial point for performing design and optimisation of the 

system.  

The cases in the case library are earlier published distillation problems with reproducible 

MINLP models. Each case contains a problem description, and the mathematical 

representation of its solution. 

When solving a target (new) problem, the most similar case to the target is found in the case 

library during the retrieval process. First, a set of matching cases is retrieved using inductive 

retrieval. The cases are classified according to the operational attributes like sharp/non-sharp 

separation, heat integration, number of products and feeds. Then the cases in the retrieved set 

are ranked according to their similarity to the target case using the nearest neighbour method. 

In the nearest neighbour retrieval, the similarity is calculated from the local similarities of 

components, their molar masses and boiling points, and composition of feeds and required 

products. Weights are set for the specific problem. 

After the retrieval, the three most similar cases are presented to the system user. The 

corresponding MINLP model can be generated based on the original articles, referring the 
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selected most similar cases, and the optimal solution of these cases can be used as starting 

point for design and optimisation. 

The developed method shows that a knowledge based method can be used in process 

synthesis for the preparation of mathematical programming model formulation, namely in the 

generation of the superstructure.  
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4. Graph representations and mathematical models 
Once a superstructure is generated, its graph representation, and the mathematical model of 

the graph representation, can be formulated. An expert engineer may have the ability to 

perform this process, and to generate an exact and mistake-free mathematical model, which 

will be optimised. However, this is a very difficult and complicated task, and needs a 

systematic procedure.  

If the mathematical model is generated, it is usually not guaranteed that it really represents the 

superstructure. A model represents a superstructure if each solution of the model is in 

accordance with a structure and to the design and operational parameters of the structure. The 

check of this correspondence is not evident, and it has not been studied until now. 

The mathematical model is usually improved to be easier to solve using a proper solver or 

algorithm. Grossmann (1996) defined three major guidelines of a „good” MINLP 

representation:  

1. Keep the problem as linear as possible.  

2. Develop a formulation whose NLP relaxation is as tight as possible.  

3. If possible, reformulate the MINLP as a convex programming problem.  

The check of these criterion needs deep mathematical insight to the model. A mathematical 

model can also be improved simply by decreasing the multiplicity (i.e. excluding the solutions 

representing the same structure), and the number of logical/binary variables. In this way the 

search space of the problem can be really tighten and, therefore, the solution time can be 

decreased, and the chance of finding the global optimum can be increased drastically. 

In this chapter a method is presented for automatic generation of the mathematical 

representation of a superstructure. The automatically generated MINLP model can be used as 

a reference for other models; that is, it can be checked whether a model represents the 

superstructure, or not. Finally, guidelines are given to how the multiplicity of the model, and 

the number of binary variables can be decreased. 

The content of this chapter has been published in papers Farkas et al. (2005bc). 

 

4.1. Relations between structures and graphs  

In a process synthesis procedure usually infinite number of physically feasible process 

structures can be used to achieve the targeted chemical process, although most of them are far 

from being optimal. For applying MINLP technique with superstructure approach, the 
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engineer have to select from the physically feasible structures a finite set of process structures 

to be studied. These preliminary selected process structures will here be called considered 

structures. This set of considered structures can be assigned by any explicit or implicit way. 

A superstructure may contain structures that are not even physically feasible; these are 

infeasible structures. Those feasible structures that are not considered, together with the 

physically infeasible structures are simply called non-considered structures. The system of 

subsets in the set of substructures of the superstructure is illustrated in Fig. 4.1. 

 

substructures of superstructure

physically feasible
structures

considered
structures

 
Figure 4.1. Classification of structures 

 

Once this set of considered structures is given, the engineer has to construct a mathematically 

treatable superstructure that includes all the considered structures as its substructures. This 

superstructure itself is usually represented by a graph or network and/or by a system of 

variables and mathematical relations.  

In the present dissertation the R-graph representation of structures will be used. From here on 

the simple term graph will be applied instead of R-graph. 

The graph representation of the superstructure will here be called the supergraph.  

 

As it was mentioned in the literature review, structural multiplicity is an important 

phenomenon caused by the possibility of representing the same structure with different graphs. 

For example the two subgraphs (Fig. 4.2b) of the supergraph in Fig. 4.2a represent the same 

structure, because the types of Unit 2 and Unit 3 are identical (Type B). It means, that these 

subgraphs are isomorphic graphs.  
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Figure 4.2a. Graph of a superstructure 

 

Unit 1
Type A

Unit 2
Type B

Unit 4
Type C

1

1 1

1

Unit 1
Type A

Unit 3
Type B

Unit 4
Type C

1

1 1

1

 
Figure 4.2b. Isomorphic subgraphs representing the same structure 

 

Structural multiplicity of a structure s in a superstructure s* represented by a graph r* is 

defined as the number of all those subgraphs of r* that represent s. In the example above, the 

multiplicity of the structure represented by the graphs shown in Fig. 4.2b is 2 inside the 

superstructure represented by the graph shown in Fig. 4.2a.  

On the other hand, redundancy of a structure in itself is defined as the difference between the 

number of all the subgraphs of a graph representing the structure and the number of all the 

substructures of the studied structure. 

 

As outlined above, the set of the substructures of a superstructure is classified according to 

whether the structure is physically feasible, and if yes then whether it is considered by the 

engineer. The same distinction can be made amongst the graphs representing the structures.  

Any graph representing physically feasible structure is, naturally, called feasible graph. All 

the other graphs (if they are anyhow constructed) are represented by so-called infeasible 

graphs. The relation between considered structures and their representing graphs is just a bit 

more complicated because considered structures may be represented by considered graphs and 

non-considered graphs as well. 

 



4. Graph representations and mathematical models 

 

 63

substructures of superstructure

physically feasible
structures

considered
structures

graphs
physically feasible

graphs

considered
graphs

G1

G2

G4

G3

S1

S2

S4
S3

 
Figure 4.3. Relations between feasible and considered structures and graphs 

 

Since the detrimental effect of structural multiplicity and redundancy can be decreased by 

non-considering isomorphic graphs representing the same structure, the set of considered 

graphs is defined to be such a set of graphs that each considered structure is represented by 

exactly one graph in this set, and each element of this set represents a considered structure. It 

follows, that there are no isomorphic graphs in the set of considered graphs. 

The relations between the mentioned sets are shown in Fig. 4.3.  

 

4.2. Example 4.1 – Problem statement 

The notions explicated in section 4.1 are demonstrated in this small example. A small 

planning problem (Kocis and Grossmann, 1987; Raman and Grossmann, 1992) is considered 

to demonstrate both the new concepts and how the methodology works. The process is to 

produce product C from raw materials A and/or B with maximal profit. Three units can be 

used to accomplish this aim, as it is shown in Fig. 4.4. Data are given in Table 4.1. 
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Figure 4.4. Example superstructure 

 

Table 4.2. Data for Example 4.1 

unit Fixed cost Variable cost 
 103 USD/h 103 USD/ton of product 
I 1.0 1.0 
II 1.5 1.2 
III 3.5 2.0 

raw material costs, 103 USD 1.8/ton of A, 7.0/ton of B 
revenue, 103 USD 13.0/ton of C 

Mass balances for units 
unit I: b2 = ln(1+a2) 
unit II: b3 = 1.2 ln(1+a3) 
unit III: c = 0.9 b 

c ≤ 1 
b2 ≤ 5 

 

a1

a2

a3

b2

b3

b1

b c

Unit I

Unit II

Unit III

 
Figure 4.5. Example network 

 

Fig. 4.5 is a one task – one equipment (OTOE) network, used for visualising the 

superstructure. The units are represented by nodes, and the streams are represented by edges. 

This figure does not represent a graph in mathematical sense because in graphs the edges 

must connect nodes, whereas here some edges (namely a1 and b1) originate from outside, and 
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one (namely c) is directed to outside of the process. For the sake of exact discussion, the  

R-graph representation of the same system is shown in Fig. 4.6. 
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Type A

Unit 2
Type B
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Type C

Unit 5
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Unit 4
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Unit 6
Type F

1

1

1 1

1

1

1 1 1
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e1 e3

e4

e5

e6

 
Figure 4.6. R-graph representation of Example 4.1. Letter ’e’ stands for edges. 

 

There are three additional units here. Unit 1 and Unit 4 are the sources of raw materials A and 

B; Unit 6 is the sink of product C. The source units do not have input ports, and the sink unit 

does not have output port. 

In this example the considered structures are selected according to the following criteria: 

1. Source stream(s) should exist. (That is, either stream a1, or b1, or both should be 

present.) 

2. Product stream(s) should exist. (That is, stream c should be present.) 

3. No other outlet stream than the product stream(s) may be present. (That is, only c may 

be an outlet stream here.)  

4. Unit I and Unit II (in the graph representation: Unit 2 and Unit 3) should not exist 

simultaneously. 

 

The first criterion states that the product is always made from the raw material(s), and cannot 

be made from nothing. The second criterion states that some product is to be produced. The 

third criterion expresses the special need of this example that no side-product is to be 

produced. The fourth criterion is applied because Unit I and Unit II (Unit 2 and Unit 3 in the 

graph representation) accomplish the same (or similar) transformation on the materials, even 

if they are units of different type, and application of two units of different types parallelly on 

the same task seems uneconomic. All these criteria are based on engineering considerations. 

Before presenting the graph representation of the considered structures, please, check the 

network representation. The network shown in Fig. 4.7 is a subnetwork of the network shown 
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in Fig. 4.5. However, it does not satisfy the above criteria; thus, it represents a non-considered 

structure. The chance for such a problem to occur is significantly reduced by applying  

R-graph representation.  

 

b2

b3

b

Unit I

Unit II
 

Figure 4.7. A subnetwork that represents a non-considered structure 

 

Figs. 4.8a-g show all the subgraphs of the supergraph shown in Fig. 4.6. All these subgraphs 

satisfy the first three criteria. On the other hand, Graph 6 and Graph 7 (Figs. 4.8f-g) do not 

satisfy the fourth criterion. The first three criteria are automatically satisfied, and only the 

fourth criterion is to be checked when graphs are applied. Therefore, the use of R-graph 

representation is beneficial in automatic synthesis.  

All the units of any supergraph are different in this simple example; there are no units of the 

same type. For this reason, there cannot exist isomorphic subgraphs; every substructure is 

represented by only one graph. Therefore, each graph representing a considered structure is 

also a considered graph.  

How the subgraphs of this example are sorted according to Fig. 4.3 is shown in Fig. 4.9. 
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Figure 4.8a. Graph 1: A subgraph of the supergraph 
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Figure 4.8b. Graph 2: A subgraph of the supergraph 
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Figure 4.8c. Graph 3: A subgraph of the supergraph 
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Figure 4.8d. Graph 4: A subgraph of the supergraph 
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Figure 4.8e. Graph 5: A subgraph of the supergraph 
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Figure 4.8f. Graph 6: A subgraph of the supergraph 
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Figure 4.8g. Graph 7: A subgraph of the supergraph 
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Figure 4.9. Grouping of the subgraphs 

 

4.3. Redundancy in representing structures by MINLP problems  

The above distinction between the set of considered structures and considered graphs is 

crucial in representing the structures by algebraic/logical models. Such a model contains 

variables; those variables correspond to uniquely labelled elements of the graph actually 

representing the superstructure. Therefore, the MINLP problem is not directly applied to the 

superstructure but to one of its particular representing graphs, the so-called supergraph. A 

solution of the MINLP problem assigns a subgraph of that particular representing supergraph.  

Graphs, representing structures, will be further represented by MINLP problems. As it was 

mentioned in the literature review, an MR, as an MINLP problem has the following form 

(Kocis and Grossmann, 1987; Grossmann, 1996): 

 

min OBJ=f(x,z) 
s.t. g(x,z)≤0 
 x∈X={x ⎢x∈Rn, xL ≤ x ≤ xU} 
 z∈Z={z ⎢z∈{0,1}k, Az ≤ a} (4.1) 
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The feasible region of this MR is denoted by  

{ }0zxgzxzx ≤∈∈= ),(,,,)MR( ZXFR  (4.2) 

i.e. the set of x and z that satisfy Eqs. 4.1. 

The MR as usually applied to the synthesis problem is never unique. An MR as defined above 

is nothing to do with the synthesis problem itself unless an unambiguous mapping is given 

from the domain of the variable values of the MR to the domain of the value set of natural 

parameters of the synthesis problem, or at least to the graph representation of the 

superstructure.  

The essential problems in mathematically defining the MR are representativeness and 

uniqueness. Whether an MR represents a superstructure and all its considered substructures 

should be determinable. An other crucial problem is comparison of two different MINLP 

representations to decide if some process flowsheets are represented by both of them. This 

seems a rather difficult task because infinite number of different MR-s can be generated just 

by simple variable transformations in such a way that the generated MR-s are equivalent. 

In order to avoid ambiguousity in defining the variables of the MR, first a Basic GDP 

Representation (BGR) involving logical relations is applied, and then a so-called Basic 

MINLP Representation (BMR) is constructed with standard mapping between them. BGR can 

be constructed by applying a standard ‘natural’ representation of the process. Then it is easy 

to unambiguously transform the logical relations to algebraic ones. Equivalency and 

representativeness of MR-s in general form will then be analyzed by reducing them to their 

BMR or by comparing their feasible domains. 

Once the definition of MR is properly given, ideality and redundancy can be analyzed. Ideal 

MR (IMR) and Binarily Minimal MR (BMMR) will be defined and compared as most 

important extremities. 

 

4.4. Basic representations 

The usual practice of developing an MINLP model of a synthesis problem is first intuitively 

constructing a superstructure of the given problem. The superstructure is usually represented 

by a network or, more conveniently, a graph (a supergraph). Then some state variables are 

also intuitively assigned to the elements (nodes and edges) of the graph. These variables may 

refer to thermodynamic states, operational parameters, construction parameters, and even to 

the existence of units and/or connections. These variables together with the evaluation 
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variables (parameters of the objective function, and the variable carrying the function value 

itself) constitute the set of variables of the MINLP model. 

Constructing a proper MR is a difficult task demanding heavily on the engineer's abilities. 

Since logical relations are more human friendly than integer variables and relations, the 

logical formulation, e.g. the GDP representation, can be utilized as a first step in formulating 

the MR. Thus, first a so-called Basic GDP Representation (BGR) is constructed, then, in turn, 

a Basic MINLP Representation (BMR) automatically transformed from BGR. This BMR will 

serve as a reference for comparison to decide whether an arbitrary MINLP formulation 

represents the superstructure. 

Representativeness and uniqueness are the two essential viewpoints in defining BGR and 

BMR. BMR is formed in a way as to represent only and all the subgraphs of a given 

supergraph. Numerical viewpoints can be taken into account later, in constructing the actual 

form of MR. The variables and the equations defined in BGR and BMR are not necessarily 

present in the final form of MR. 

 

4.4.1. Basic GDP Representation 

A General Disjunctive Programming (GDP) model is constructed in the spirit of Yeomans 

and Grossmann (1999a) but based on the R-graph representation given in Rév et al. (2005). 

This GDP model is called here Basic GDP Representation (BGR). 

It is formulated in such a way that some formulas describing the behaviour of unit operations 

work on the variables belonging to particular units; some formulas work on stream properties, 

etc. Therefore the variables have to be grouped according to which unit operations and which 

streams they belong to. 

A set of unit type variables and unit type equations are to be attributed to each unit type. 

When a particular unit (with particular labels, like “1” or “2” amongst the same type of units) 

is selected, it is attributed with particular unit equations and constraints (together called unit 

relations) according to its type, acting on the set of unit variables. These unit relations are of 

the same shape for identical unit types. That is, if there are two copies of the same unit type 

then two, formally equivalent, sets of relations are applied to different variables.  

Basic GDP Representation (BGR) is then defined by the following formulation: 
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I. Sets  

The sets include the frame set of units and unit types, their input and output ports as well. Any 

particular graph is a construction including the set M of actual units, the set of input and 

output ports, the types of these units, and the set E of graph edges e (e∈E). 

R-graph is a connected graph, and its subgraphs also have this property. In some cases one or 

more units of a graph occur in each of its subgraphs. For example, if a graph has exactly one 

sink unit, then this unit should occur in all its subgraphs, otherwise those subgraphs would not 

be R-graphs. Generally not just the sink or source units, but a unit of any type may have this 

property in a particular supergraph. These units are called permanent units of the supergraph, 

while all the other units are called conditional units. 

Accordingly, the set M of units is partitioned in BGR as M = M perm ∪ M cond where M perm is 

the set of units that occur in all the subgraphs, and M cond is the set of units that does not occur 

in all the subgraphs of the supergraph. 

 

II. Variables 

Each unit m∈ M is attributed with the following variables: 

Numerical variables: 
in

rm,e  array of inlet extensive variables, r=1, 2, …, αt 

out
rm,e  array of outlet extensive variables, r=1, 2, …, βt 

in
rm,i  array of inlet intensive variables, r=1, 2, …, αt 

out
rm,i  array of outlet intensive variables, r=1, 2, …, βt 

dm  array of design and control variables 

om  array of operation variables 
fix

mc  fix costs due to unit m 

var
mc  variable costs due to unit m 

where 

t type of unit m 

αt number of input ports of unit type t 

βt number of output ports of unit type t 
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The variables in the arrays in
rm,e  and in

rm,i  will be lumped together and denoted by in
mx , and the 

lumped version of out
rm,e  and out

rm,i  is denoted by out
mx . 

For each conditional unit a logical variable is also defined: 

Zm the existence of conditional unit m 

Variables attributed to the edges of the graph, describing what fraction of the stream produced 

at the output port of a unit where that edge starts is directed to the input port of an other unit, 

where the edge points to: 

0 ≤ ϕe ≤ 1 (4.3) 

 

III. Feasibility constraints 

Unit relations: 
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Equations for input ports: 

∑
∈

=
r][

,,
m,in,e

out
hne

in
rm

E
ee ϕ  for all <m,in,r> (4.5a) 

)(f ,,
out

hn
iin

rm xi =  for all <m,in,r> (4.5b) 

where E[m,in,r] is the set of all the edges ending at input port r of unit m; these edges are 

started at output ports <n,out,h>, where <n,out,h> is the output port h of unit n that is 
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connected to input port r of unit m by an edge e. The array out
hn,x  includes all the extensive and 

intensive variables of all the ports <n,out,h> connected to port <m,in,r> by an edge. 

 

Equations for output ports: 

1
][

=∑
∈ m,out,ke

e
E

ϕ    for all <m,out,k> (4.6) 

 

IV. Objective function 

( )∑
∈

+
Mm

var
m

fix
m cc

zx,
min   (4.7) 

 

The above defined sets, variables, and Eqs. 4.3-4.7 together define the Basic GDP 

Representation (BGR). 

Eq. 4.6 expresses the requirement that the sum of fractions is unity. Naturally, these fractions 

are non-negative, and limited by 1. This is expressed by Eq. 4.3.  

Eqs. 4.4 express the feasibility constraints and cost functions attributed to the unit operations. 

For the sake of simplicity, negative variables are excluded. Any negative number can be 

expressed as a difference of two non-negative numbers. Pt defines the unit operation together 

with its equipment (construction). Generally, subequation system Pt includes components of 

both equality and inequality form. For example, a material balance around a unit is an 

equality, whereas a subequation expressing that a variable is greater than some minimum, as a 

complicated function of the other variables, is an inequality. Any equality can be expressed as 

a pair of two inequalities. For the sake of simplicity in notation and the proofs, “smaller than 

or equal to” relation is used here for Pt in Eqs. 4.4. On the other hand, all the results remain 

valid if equality may occur in components of Pt; and application of equality, if possible, is 

simpler in practice. 

The objective function (Eq. 4.7) is a sum of objective parts attributed to each unit. These parts 

are computed by Pfix and Pvar. Pfix is the part of fix costs, depending on the design and 

control variables. Pvar expresses the variable costs. Eq. 4.4a is applied to the permanent units; 

Eq. 4.4b is applied to the conditional units. Variable Zm in Eq. 4.4b expresses the existence or 

non-existence of the unit m. If the unit exists, the variables should satisfy the same equations 

that occur in Eq. 4.4a (Pt, Pfix, Pvar). When the unit does not exist, the cost increments must 

be zero, and all the other variables are also set to zero. 
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In Eq. 4.4b logical relations ∧ (‘and’) and ∨ (‘or’) and ¬ (‘not’) take place; this is a logical 

truth function. Each conditional unit is defined in the so-called disjunctive normal form; that 

is why this model is called GDP (disjunctive programming). 

In the model the output ports behave as stream splitters (Eq. 4.6); the input ports behave as 

stream unifiers (Eqs. 4.5). In the unifiers the extensive variables are added together (Eq. 4.5a), 

while the intensive variables of the unified stream are more complicated functions of all the 

stream properties (Eq. 4.5b).  

A significant difference between the BGR and the GDP model of Yeomans and Grossmann 

(1999a) is that in BGR not any additional pure logical relations is provided between the 

logical variables (see Eqs. (4) and (18) in Yeomans and Grossmann, 1999a) that would look 

in this case as: 

Ω(Z)=True  (4.8) 

There are two reasons for this change. Eq. 4.8 would be used for expressing possible 

substructures, and, based on engineering considerations, for excluding some not considered 

substructures from the set of structures. In our case, however, the supergraph is an R-graph, 

therefore no additional logical relations are needed to define the substructures. Instead, 

Eqs. 4.5-4.6 express the splitter and unifier properties. On the other hand, here a basic 

representation is automatically constructed, and it does not include engineering considerations, 

that cannot be graphically represented. Such considerations will be included in a later phase 

of the modelling and design procedure. 

Another significant difference is that the Pvar and Pfix functions are not inserted directly into 

the objective function, but refer to them through the cost variables var
mc  and fix

mc . Although the 

significance of this choice is not evident in the first sight, it will be transparent when the 

MINLP representation is formed. The essential consequence of this small change is that the 

binary variables in this model are not present in the objective function. 

A third difference is that the assignment of permanent units is used by Yeomans and 

Grossmann for arbitrarily constraining the set of feasible structures. In BGR only those units 

are assigned as being permanent that really are present in all the subgraphs. This is an 

unambiguous assignment. 
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4.4.2. Example 4.1 – Basic GDP representation 

Here the GDP representation of Example 4.1, given in Table 4.1 and Figs. 4.4-4.9, is 

constructed. 

 

The continuous variables represent the inlet and outlet flow rates and the costs. There are not 

intensive or other extensive variables of streams. Neither design nor operation variables of 

units are applied. 

 

Continuous variables. 
in
mx  inlet flow rate (ton/h) 

out
mx  outlet flow rate (ton/h) 

fix
mc  fix costs due to the existence of unit m 

var
mc  variable costs belonging to unit m 

 

The permanent units are Unit 5 and Unit 6 because they belong to the only possible product. 

All the other units are conditional because either one of Unit 1 or Unit 4 may play the role of 

a single feed, and either Unit 2 or Unit 3 may be present in the solution without the other one. 

A Zm logical variable is also defined to each conditional unit. Finally, a continuous variable ϕe 

is assigned to each edge. There are altogether 27 continuous real variables (xi, i=1, 2, … 27), 

including all the in
mx , out

mx , fix
mc , var

mc , and ϕe variables, and 4 logical variables (Zm, m=1, 2, 3, 

4). These variables can be lumped in an array x of the continuous variables, and an array Z of 

the logical variables. Once these variables are assigned, their bounds can be defined. The 

bounds assign a range X of the continuous array, and a range Z  of the logical variables, as in 

Eq. 4.9. 
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 (4.9) 

 

Now, the relations can be given as follow.  

 

Unit relations of permanent units: 
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Unit relations of conditional units: 
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Source and sink units do not have operation equations. The operation equations of the other 

units are formed as inequalities. (These relations can be written in equation form in the 

MINLP representation.) 

 

Equations for input ports: 
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Equations for output ports: 
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  (4.12) 

Those ϕe variables which have value 1 may be dropped in an MINLP representation different 

from BGR and BMR. 

 

Objective function: 
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var
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zx
  (4.13) 

 

4.4.3. Basic MINLP Representation 

BGR can be solved using appropriate algorithms utilizing the GDP form; but representing the 

synthesis problem by MINLP model is yet more common and well-spread in the chemical 

engineering communities. However, well formulating a synthesis problem as MINLP is 

difficult, whereas formulating it as a GDP is most convenient. Respectably, it is worth 

automatically transforming the conveniently formulated BGR of the synthesis problem to its 

MINLP formulation.  

BMR is automatically formed from BGR by transforming the disjunctions of Eq. 4.4b into 

algebraic form while substituting binary variables z in the place of the logical variable Z. As it 

was mentioned in the literature review, widespread transformations are the so-called Big M, 
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Multi M and Convex hull methods (Raman and Grossmann, 1991; Grossmann and Türkay, 

1996; Szitkai et al., 2002; Vecchietti et al., 2003). Any of these methods may be used for 

defining BMR; all are equally proper methodologies. For example, the Big M transformation 

of Eq. 4.4b leads to the following subsystem of equations: 
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 (4.14–4.24) 

where L and U are the lower and upper bounds, respectively, and ε is a non-zero vector of 

small length, introduced in order to exclude zero vector from the domain. 

 

4.4.4. Example 4.1 – Basic MINLP Representation 

Once the GDP unit relations of the conditional units are given (Eqs. 4.10c-f), the Basic 

MINLP Representation can be automatically generated. First, the logical variables Z are 

transformed into binary zones; thus, the range Z of the binary variables becomes: 
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Then, the equations can also be transformed, accordingly. The transformed equations are 

listed below: 
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Some of these equations can be written in simpler form. For example, a simpler form of the 

equations concerned to fixc4  (from Eqs. 4.28 and 4.31) is the following: 

04 =fixc   (4.33) 

 

Instead of the four inequalities in Eq. 4.32, two inequalities are enough: 
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These simpler forms (Eqs. 4.33-4.34) are, however, not used here in order to ensure the 

unambiguous form of the BMR.  

The non-transformed variables and the non-transformed equations are unchanged; therefore 

they are not shown here. 

 

4.5. MINLP representation 

For avoiding multiplicity and redundancy in the MINLP problem representation, one has to be 

able to determine if a given MR represents a supergraph (or a superstructure) or not. The 

same question emerges if two representations have to be compared according to their feasible 

regions. Without special care, one cannot be sure if the MR really represents all the 

considered structures. I have not found in the literature such a definition of MR that could be 

applied to solve this problem. 

The main difficulty here lies in the fact that the number of variables, and even their names and 

characteristics are subject to arbitrary variations. 

Here the definition of the MR is suggested through a fixed form of BMR. There is a double 

merit of this definition. First, in this way the question of representation can be solved, as 

shown below. Second, such a BMR can automatically be generated and can serve as a 

reference representation.  

MR should be defined in such a way that each of its solutions unambiguously assigns a graph 

state and thus a flowsheet in the same way as BMR does, but it may contain arbitrary 

superfluous information. This may include superfluous information on structures not 

considered, or it may also include redundant information on the considered structures. 

Here MR is defined in two different, but related, ways. The first, general, definition deals with 

the ability of an MINLP problem formulation to represent the considered structures of the 

synthesis task. This general definition includes the existence of a bijection π between 

FR(BMR) and a subset B of FR(MR). This definition can be applied to check if an MINLP 

problem formulation can anyhow represent the considered structures of a synthesis task. 

The general definition of MR is the following:  

An MR (MINLP problem Representation) represents a graph if the following two conditions 

are satisfied:  
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1. Such a subregion B ⊆ FR(MR) exists that a bijection π: B ⇔ FR(BMR) can be given where 

FR(BMR) is the feasible region of the basic representation of the graph, and FR(MR) is the 

feasible region of the actual MR in question. 

2. For each solution (x, z) of MR that lies in B (that is (x, z)∈B) OBJMR(x, z) is equal to 

OBJBMR(π(x, z)), where OBJMR and OBJBMR denote the value of the objective functions of 

MR and BMR, respectively. 

This general definition of MR is explained in Fig. 4.10. The constraining conditions, that 

enforce the solution to represent an R-graph, assign the feasible region FR(BMR). Points of 

FR(BMR) describe the subgraphs (but not necessarily just the considered graphs). B is a 

subset of the feasible region of MR, that is, it is a subset of FR(MR). If a part of B was not 

subset of FR(MR) then some of the feasible solutions of BMR, and thus some of the 

subgraphs, would not be represented by MR. As B is a subset of FR(MR), the feasible 

solutions of MR include all the solutions that are mapped to the states of the subgraphs. The 

connections between the representations and sets are shown in Fig. 4.11. 

 

FR(BMR) FR(MR)

B

domain of MR

( , )p q

( , )x z

( ’, ’)x z

domain of MRB

 

Figure 4.10. The mapping π, and the relation between FR(BMR), and FR(MR) 

 

Supergraph BGR BMR FR(BMR)

FR(MR)MR
B ⊆ FR(MR)  

*; ZX ∈∈ zx *

 
Figure 4.11. Connections between sets and representations 

 

Here the reader has to be reminded to what was written in the paragraph below Eq. 4.8. The 

superstructure is represented by a supergraph, and no structural constraints additional to what 
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is applied in BGR are applied in BMR. Therefore, FR(BMR) includes all the subgraphs of the 

supergraph, not just the considered graphs. Thus, all the subgraphs of the supergraph are 

represented by FR(BMR) and by B⊆FR(MR). It then follows that if an R-graph is represented 

by an MR then all the subgraphs of that R-graph are also represented by that MR.  

According to the definition of isomorphy, bijection can always be given between two 

isomorphic graphs. It then follows that if a graph is represented by an MR then all its 

isomorphic graphs are also represented by that MR.  

FR(MR) may contain feasible solutions outside of B, and these solutions may correspond to 

graphs and structures not included in FR(BMR). Such a correspondence can be expressed by 

some mapping from FR(MR) to the set of some flowsheets, or their representing graphs, 

including all those represented by FR(BMR), and others not represented by it. That is, an 

arbitrary representation of the synthesis task can be wider than the BMR, but cannot be 

narrower. In this way a representation can carry any additional information, but it also carries 

all the information necessary for describing the subgraphs of the supergraph. 

The second, restricted, definition of MR includes a particularly assigned surjection ψ from 

FR(MR) to FR(BMR). Such a mapping ψ can be assigned only if the above bijection π exists. 

Once such a surjection ψ is given, a bijection π with the property π⊆ ψ always exists. Thus, 

this representation can be defined as a restriction of the general MR to the application of a 

particularly selected surjection ψ. 

MR may contain a feasible solution (x’, z’), outside of B, that is also mapped to (p, q) 

according to the surjection ψ, as is also shown in Fig. 4.10. In this case the MR with the 

particular selection of ψ is redundant, because two feasible solutions are mapped to the same 

flowsheet. Such a redundancy is not excluded, and avoiding this kind of redundancy is not 

always preferable. 

This restricted definition of MR is beneficial in defining ideal MINLP representation. Which 

definition is applied must be clear from the textual environment. 

We cannot emphasize with great enough weight that the actual MINLP problem formulation 

of MR is not in any way bound to the variables and equations of BMR. The only restriction is 

the existence of a bijection between a subset B⊂FR(MR) and FR(BMR) in such a way as to 

provide with the same objective value. The engineer has the freedom to apply a formulation 

best fitting to convenience and numerical efficiency. 
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4.5.1. Example 4.1 – an MINLP representation 

Kocis and Grossmann (1987) presented an MINLP representation to a planning problem 

identical to our example. This MR is also presented in Appendix. Here I demonstrate that the 

MR of Kocis and Grossmann (1987) represents the same superstructure as our BMR does for 

Example 4.1 presented in section 4.2 and also dealt with in subsection 4.4.2. For this aim, a 

bijective mapping from subregion B of FR(MR) to FR(BMR) has to be given. 

It is shown the construction of this mapping. First, consider the source of raw material B that 

is represented by continuous variable b1 in the network of Kocis and Grossmann (Fig. 4.5), 

and by a pair of continuous variable outx4  and the binary variable z4 in our Basic MINLP 

Representation. Variable outx4  describes the flow rate of the material flow if that raw material 

is applied. Whether raw material B is applied is described by the binary variable z4; this 

formally corresponds to the existence of Unit 4 (source unit). Here a mapping is given 

between the values of the pair (z4, outx4 ) falling in the feasible region of BMR and the values 

of b1 falling in the B subset of the feasible region of MR. (If MR represents all the structures 

represented by BMR then all the feasible values of (z4, outx4 ) should have a picture value b1, 

and each such picture value should have an unambiguous (z4, outx4 ) ancestor value. On the 

other hand, the b1 values in FR(MR) outside of B do not have ancestor according to this 

mapping.)  

In the MR, b1 is a non-negative variable without any upper bound; thus, b1 can take any non-

negative value. But the set of feasible values of b1 is narrower. This feasible set can be 

determined as follows. There is an upper bound for the product c:  

1=≤ UPcc   (4.35) 

The operation equation of Unit III is: 

09.0 =− bc   (4.36) 

From here, the maximal value that b can take is 

11.19.0 == UPmax cb .  (4.37) 

The material balance of mixing bi flows is 

0321 =−++ bbbb   (4.38) 

The values of either b2 or b3 can be arbitrary near zero. Therefore, the maximal value that b1 

can take is almost the maximal value of b. For practical purposes, we take the limit: 

11.11 == maxmax bb   (4.39) 
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The feasible set of b1 is, therefore, the closed interval [0, 1.11] (see Fig. 4.12). 

The lower and upper bounds of the variables in the graph representation were determined in 

Eqs. 4.9 and 4.25. For z4 and outx4  variables these are: 

{ }
[ ]11.1,0

1,0

4

4

∈

∈
outx

z
  (4.40) 

However, there are additional constraints for these variables in BMR in order to exclude some 

extreme and prohibited cases: 

44 11.1 zxout ≤   (4.41a) 

( ) ε−−≤− 44 111.1 zxout   (4.42b) 

Eqs. 4.40-4.41 describe the corresponding subset, belonging to these variables in BMR, of the 

feasible set of FR(BMR). 

 

0 1

0.5

1
1.11

z40 0.5 1.11 b1

FR(BMR) 
for ,      z4

πb1

FR(MR) for b1

ε

πb1

ε
outx4

outx4

 
Figure 4.12. Bijection π applied to the feasible values of variable b1 

 

A bijective mapping πb1 between the feasible sets of b1 and (z4, outx4 ) can be defined as given 

by the analytical definition Eq. 4.42 and shown in Fig. 4.12: 

⎩
⎨
⎧

==⇒≤≤
==⇒=

1and11.1if
0and0if

:
4141

4141
1 zbxb

zbxb
out

out

b ε
π   (4.42) 

In bijection πb1, variable b1 can take values from region Bb1={0; [ε, 1.11]}, that is the union of 

the point of the exact zero and of the closed section between ε and 1.11. This set Bb1 is the 

subregion of the feasible set of b1 in FR(MR). For all the other variables in MR of Kocis and 

Grossmann, a similar bijection can be constructed. In this way it can be proved that the 
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MINLP representation of Kocis and Grossmann represents the same superstructure as 

represented by the Basic GDP Representation. 

 

4.6. Multiplicity of the MINLP representation 

Depending on the actual form of the MINLP problem, multiple local optima, and even 

multiple global optima may occur. As a consequence of their presence, the optimiser may get 

into a difficult situation because the objective function does not vary over a domain of non-

zero measure. Most of the solution methodologies apply forming continuous (NLP) 

subproblems combined with either MILP subproblems or tree enumeration. Therefore, 

making distinction between binary and continuous multiplicities seems useful.  

One way of forming NLP subproblems is fixing all the binary values. (For example, this is 

applied in the outer approximation method.). Binary multiplicity exists if two different NLP 

subproblems, belonging to differently fixed values of the binary variables, lead to the same 

optimum. The continuous variables may also take different values. 

On the other hand, any NLP subproblem can also have several different optimal solutions 

with equal objective values. This means that different values of the continuous variables of 

the NLP, assigned by fixed values of the binary variables, lead to the same optimum. We say 

that the MINLP problem has continuous multiplicity if one of its NLP problems has this 

property. 

Both the binary and the continuous multiplicity are determined by the form of the MINLP 

problem. The actual form is somewhat arbitrary; it is in the hand of the engineer or the 

mathematician. A great extent of multiplicity can be introduced or removed by inapt or 

efficient formulation. A generally applied way of formulation is assigning binary variables for 

describing existence or non-existence of units. This conventional methodology is applied in 

the definition of BMR. If this kind of binary variables is applied and if there is redundancy in 

the superstructure (irrespectively if it is represented by graph or not) then a great extent of 

binary multiplicity, originated from structural multiplicity and redundancy, may occur. In 

some cases this kind of binary multiplicity is evident, in other cases it is not, and in some 

cases they are even not recognized. This is also manifested in the works of the researchers 

who tried to eliminate the multiplicity, e.g. Reyes-Labarta and Grossmann (2001), Reneaume 

et al. (1995), Lelkes et al. (2000). Of course, some sources of binary multiplicity may also be 

independent of the superstructure. 



4. Graph representations and mathematical models 

 

 87

If a supergraph is structurally redundant (i.e. if there are isomorphic graphs amongst its 

subgraphs) then BMR has binary multiplicity.  

This statement can easily be proved: Let a supergraph R be structurally redundant. Then it has 

at least two isomorphic subgraphs, R1 and R2. Since R1 and R2 are isomorphic, they represent 

the same structure. BMR represents all the subgraphs of R, including R1 and R2. R1 can be 

assigned by fixing the binary variables to value z1, and R2 can be assigned by fixing the 

binary variables to z2≠z1. These different binary values assign different NLP-s, but their 

optima are equal since R1 and R2 represent the same structure. Thus BMR has binary 

multiplicity.  

Conversely, the structural redundancy of the supergraph does not follow from the binary 

multiplicity of its BMR. It is easy to construct two non-isomorphic graphs and an objective 

function that leads to the same optimum. 

A small, perhaps unrealistic, counter-example is shown in Fig. 4.13. Here the process has a 

single input and a single output stream, their measure are denoted by the real variables x and y, 

respectively. The single source unit and the single sink unit are permanent units of the 

supergraph. The two other units are applied parallel; therefore, either one of them may be 

omitted, leading to different subgraphs, as is shown in Fig 4.14. Suppose that simultaneous 

existence of Unit 2 and Unit 3 are prohibited. 

The two parallel units are of different type; therefore, these two subgraphs are not isomorphic; 

they represent different process structures. There is no structural redundancy here. Let the 

existence or omitting of the parallel units be described by binary variables. 

Let the objective function be simply y, and let this objective be determined by the simple 

formulas shown in Figs. 4.13-4.14, according to which parallel unit is in use. In case of Unit 2: 

y=x2 ; in case of Unit 3: y=2x2. In case of x=0, y has the same value (y=0) in both cases. This 

is a simple case of binary multiplicity without having structural redundancy. 

 

Unit 1
Type A

Unit 2
Type B

y=x2

Unit 3
Type C
y=2x2

Unit 4
Type D

x y

 
Figure 4.13. Supergraph of the small counterexample 
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Unit 1
Type A

Unit 2
Type B

y=x2

Unit 4
Type D

x y

Unit 1
Type A

Unit 3
Type C
y=2x2

Unit 4
Type D

x y

 
Figure 4.14. Two non-isomorphic feasible subgraphs of the supergraph 

 

As is written by Rév et al. (2005), by-pass multiplicity may occur if not R-graphs are applied. 

By-pass multiplicity is manifested via continuous multiplicity in the MINLP representation. 

On the other hand, application of R-graphs does not eliminate all the continuous multiplicity 

originated from the superstructure. It is an open question if a superstructure eliminating all 

such multiplicity can always be given. 

 

4.7. Ideality of the MINLP representation 

The first task of the engineer, in the process synthesis, is to assign the considered structures. 

However, a considered structure may be represented by several isomorphic R-graphs, each 

being a subgraph of the supergraph. Therefore, the engineer has also to assign the set of 

considered graphs. The set of considered graphs should not include isomorphic pairs. 

Unfortunately, representation of non-considered graphs by the MINLP representation is not 

excluded.  

The Ideal MINLP Representation (IMR) is an MR which represents the considered graphs 

only, and no other graphs. This is an MR restricted to a surjection ψ from the feasible domain 

of MR to the feasible domain of BMR. This mapping ψ contains, as a subrelation, π⊆ψ, 

where π is a bijection between a subset of the feasible domain of MR and the selected set of 

graphs. 

Here a measure of non-ideality is defined as follows: Let the number of considered subgraphs 

be ncg>0; let the number of represented subgraphs be nrg ≥ ncg, then the measure of non-
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ideality is the ratio: NI=(nrg - ncg)/ncg. This measure reaches very high values if the number of 

isomorphic subgraphs is great. 

Although ideal superstructure does not always exist, moreover, in the important cases it 

usually does not exist, ideal MINLP representation always exists. This existence is shown 

here by construction. IMR can always be constructed as follows.  

First, a BGR and the BMR of the superstructure is constructed. Then, the criteria of 

considered structures are expressed in logical relationships. Satisfaction of these relationships 

excludes all the non-considered graphs; thus it enables just the considered graphs to be 

present in the solution space. These logical relationships include logical relations like ‘and’, 

‘or’, ‘not’, ‘implication’, etc, and logical variables. In most of the cases, the applied logical 

variables are the logical variables of the BGR, expressing the existence of the units. These 

logical relationships together form a logical truth function, corresponding to Eq. 4.8. Any 

truth function can be expressed in conjunctive normal form. How it can be done is described, 

for example, by Raman and Grossmann (1991). Any conjunctive normal form can be 

transformed into linear equations using binary variables instead of logical ones. By inserting 

these linear equations into the BMR, the MR formed this way is an IMR because all the non-

considered graphs are excluded by the inserted relations.  
 

4.7.1 Example 4.1 – an ideal MINLP representation 

Here the above procedure is demonstrated for constructing IMR of Example 4.1. Earlier, in 

the problem statement, the criteria of the considered structures have been defined as: 

1. Source stream(s) should exist. 

2. Product stream(s) should exist. 

3. No other outlet streams than the product stream(s) may be present. 

4. Unit 2 and Unit 3 should not exist simultaneously. 

These criteria can be written via logical variables in the following way: 

1. 41 ZZ ∨  (4.43) 

2. 6Z  (4.44) 

3. 321 ZZZ ∨⇔  (4.45a) 

 5432 ZZZZ ⇔∨∨  (4.45b) 

 65 ZZ ⇔  (4.45c) 

4. ( )32 ZZ ∧¬  (4.46) 
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Eqs. 4.44 and 4.45c are always true, because Unit 5 and Unit 6 are permanent units. For the 

same reason Eq. 4.45b can be written in this form: 

432 ZZZ ∨∨  (4.47) 

The conjunctive normal form of these relations is (see Raman and Grossmann, 1991): 

1. ∧∨ )( 41 ZZ  (4.48) 

3. ∧∨∨¬ )( 321 ZZZ  (4.49a) 

 ∧¬∨ )( 21 ZZ  (4.49b) 

 ∧¬∨ )( 31 ZZ  (4.49c) 

4. )( 32 ZZ ¬∨¬  (4.50) 

This conjunctive normal form can be transformed into linear equations using binary variables: 

1. 141 ≥+ zz  (4.51) 

3. 0321 ≤−− zzz  (4.52a) 

 021 ≤+− zz  (4.52b) 

 031 ≤+− zz  (4.52c) 

4. 132 ≤+ zz  (4.53) 

An IMR representation is formed simply by appending the BMR with Eqs. 4.51-4.53. On the 

other hand, R-graphs are used, and it has been shown that the first three criteria are 

automatically satisfied using R-graph representation. Therefore, Eqs. 4.51-4.52 are 

automatically satisfied, and only the fourth criterion is to be checked. It follows that only 

Eq. 4.53 is to be appended to BMR. Then the non-considered graphs are excluded; therefore, 

the representation becomes ideal. 

4.8. Binarily minimal MINLP representation 

The problems including integer or binary variables (ILP/MILP/MINLP) are usually more 

difficult to solve than the problems without them (LP/NLP). The applied form of the 

equations and the applied methodology of treating the integer variables (type of relaxation) 

together determine the effectiveness of the solution algorithm and the scale of the solvable 

problems. Although a great number of integer variables can be successfully dealt with in 

special cases, they involve serious difficulty in general case. Usually the difficulty (solution 

time, for example) of solving the problem drastically increases with the number of integer 

variables. Therefore, decreasing the number of integer variables has a key role in increasing 

the scale of the solvable problems and decreasing the solution work. 
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In principle, all the integer variables can be eliminated by an appropriate transformation of the 

variables and the equations. For example, any binary variable z can be substituted by a 

continuous variable x with the following extra constraint: x(x-1)=0. In this case the feasible 

values of x are 0 and 1. On the other hand, such elimination introduces another type of 

difficulty, i.e. it is usually unsolvable by the commonly applied solvers. Therefore, 

compromise is to be found between the number of integer variables and the equation forms 

applied in the problem formulation. It should also be taken into account that the commonly 

applied solver algorithms usually enable the binary variables appearing in linear members 

only in the equations. 

Here the compromise is suggested that applies the minimum number of binary variables with 

the constraints that (i) the structural variants are all distinguished by binary variables and (ii) 

the linearity of the binary members in the equations is maintained. 

From here on, the simple case of using the binary variables is considered to distinguish 

between the structural variants only. With this simplification, the term ‘binary variable’ will 

mean ‘binary variable applied to make distinction between different structures’. 

An MR is called Binarily Minimal MINLP Representation (BMMR) if it applies a minimum 

number of binary variables to make distinction between represented subgraphs. 

In mathematical sense it can be formulated as application of the minimum number of binary 

variables with the condition that an injective (i.e. invertible) mapping can be given from the 

domain Z of z (the binary variables) to the set R={r1, r2, …, 
gnr } of the subgraphs. This 

condition means that any rl∈R graph is assigned to only one value of z. If the MR is BMMR, 

such a mapping with less number of binary variables cannot be given. 

It is useful if one knows how many binary variables are to be minimally used. This can be 

readily given by knowing how many graphs are to be described. An array of nbv binary 

variables can take bvn2  different values. This number is to be at least as great as the number ng 

of the R-graphs: g
n nbv ≥2 . That is, nbv is the smallest whole number that satisfies nbv ≥ log2 ng. 

The equality is satisfied only if ng is exactly a whole power of 2. 

In practice, the above set R of described graphs is to be the set of considered graphs. If ng is a 

whole power of 2 then the BMMR is necessarily an IMR because no other graph is described 

than those in R. However, if ng is not a whole power of 2 then the number of graphs described 

by the binary variables can be greater than ng. For example, let ng =10; then nbv=4 (because 

23=8<10<16=24), and bvn2 =24=16. Thus, 1 to 6 additional graphs (numbered as 11, 12, …, 16) 
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could be described by the binary variables depending on if they are part of the feasible region 

or not. Should the BMMR not be IMR, it can always be made also an IMR by applying extra 

constraints that exclude the superfluous graphs from the feasible region. 

Binarily minimal MINLP representation can always be constructed. Here we prove this 

theorem by construction. The method presented here for constructing BMMR serves this 

purpose only, and should not be considered as the only or the best methodology. Different 

methodologies can be elaborated, and numerical viewpoints can be taken into account, when 

the engineer constructs a proper methodology for the particular shape of the problem at hand. 

The methodology used here as a proof is that follows.  

1. The conjunctive normal form (CNF), mentioned in the section above describing how to 

construct IMR, is to be converted into disjunctive normal form (DNF) where all the logical 

variables take place in each member of the expression. This can be accomplished in an 

automatic procedure (see its application for process synthesis, for example, in Raman and 

Grossmann, 1991). The DNF consists of a series of clauses (i.e. brackets) joined with ‘or’ 

relation, the brackets containing logical items, with or without the operator ‘not’, separated 

with ‘and’. The DNF looks like [(Z1∧¬Z2∧Z3…) ∨ (¬Z1∧Z2∧Z3…) ∨ (Z1 ∧¬Z2∧¬Z3…) ∨…] 

where the Z-s, separated by ‘and’, are the logical variables of the BGR. Each considered 

graph rl is assigned the integer index l (1 ≤ l ≤ ng). Each of the clauses separated by ‘or’ 

corresponds to a considered graph rl (and, in turn, to a distinct structure, see Brendel et al., 

2000). That is, DNF is given in the form: 

limimipipnl
ZZ

g

)(
missingpresent,...,2,1

¬∧∧∨
∀∀=

 (4.54) 

where ip are indices of units present in considered graph rl, whereas im are indices of units not 

present in considered graph rl. 

2. The above l indexes as whole numbers can be expressed in binary form. The minimum 

number of necessary binary variables is determined by the maximum of these indexes, 

denoted by ng. This minimum, as we have seen above, is the smallest whole number nbv that 

satisfies nbv ≥ log2 ng. Let the binary digits be described by using the binary variables 
~

iz  (i=0, 

1, 2,…, nbv -1) so that the index l is expressed as 

∑
−

=

+=
1

0

~
21

bvn

i

i
izl  (4.55) 
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This expression of a particular number l defines an index set I1 of indices i for which 
~

iz =1, 

and another index set I0 of indices i for which 
~

iz =0. This definition of index sets depends on 

the actual value of l. Therefore, these index sets are given as functions of l: 

⎭
⎬
⎫

⎩
⎨
⎧ ==

⎭
⎬
⎫

⎩
⎨
⎧ ==

55.4Eq.in0|)(

55.4Eq.in1|)(

~

~

i

i

zil

zil

I0

I1
 (4.56) 

3. Then a set of integer variables Ql (l=1, 2, …, ng) is defined as: 

∑∑
∈∈
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1
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i

li
il zz-Q

I0I1

 (4.57) 

If the actual value of 
~
z  substituted into Eq. 4.55 gives the value l then Ql=0; otherwise Ql≥1. 

4. In the next step, the BMR is transformed into BMMR using the above defined 
~
z  and Ql 

variables instead of z. The BMR is formed using Big M technique. The Big M equations of 

the BMR contains members multiplied by factors of zi or (1-zi), see Eqs. 4.13-4.23 in general, 

and Eqs. 4.29-4.35 of Example 4.1.  

First, the ng equations from Eq. 4.57 (l=1,2,…, ng) are introduced.  

Then for each unit m, it can be easily decided if it is contained by graph l, using the 

decomposition of the index set of units (or their logical ‘presence’ variables Zm) to ip and im, 

according to Eq. 4.54. 

For each unit m, and for each equation of unit m that does contain a factor zm, this equation is 

used as many times as many considered graphs contain unit m. In each of these copies the 

factor zm is substituted by a unique Ql, where l is the index of a considered graph that contains 

unit m. That is, each such l is applied by turn. 

For each unit m, and for each equation of unit m that contains a factor (1-zm), this equation is 

used as many times as many considered graphs do not contain unit m. In each of these copies 

the factor (1-zm) is substituted by a unique Ql, where l is the index of a considered graph that 

does not contain unit m. That is, each such l is applied by turn. 

That is, for each unit m, ng variants of each equation are, in principle, formed. In practice, 

many of these newly formed equations are redundant, therefore may be omitted.  

At this point, i.e. by completing step 4, BMMR is formed. This form of BMMR has the merit 

that all the equations containing binary variables are linear; i.e. no non-linear equation is 

added to the original form of BMR.  
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4.8.1 Example 4.1 – a binarily minimal MINLP representation 

Here we demonstrate the above procedure for constructing the BMMR of Example 4.1. 

The disjunctive normal form can be accomplished from conjunctive normal form (Eqs. 4.48-

4.50) in an automatic procedure. This is Eq. 4.58. Each of the clauses corresponds to a 

considered graph. For example, the Z3 logical variable is false in the first clause; all the other 

logical variables are true. Thus, this clause corresponds to a graph in which all the units exist 

except Unit 3. This graph is shown in Fig. 4.8a. There are 5 considered graphs, these are 

presented in Figs. 4.8a-e, and all these graphs are denoted by one clause in DNF. The 

considered graphs are assigned the integer index j. It is shown in Eq. 4.58. 

 

 R-graph l 

( )∨∧∧∧¬∧∧ 654321 ZZZZZZ  Fig. 4.8a 1 

( )∨∧∧¬∧¬∧∧∨ 654321 ZZZZZZ  Fig. 4.8b 2 

( )∨∧∧∧∧¬∧∨ 654321 ZZZZZZ  Fig. 4.8c 3 

( )∨∧∧¬∧∧¬∧∨ 654321 ZZZZZZ  Fig. 4.8d 4 

( )∨∧∧∧¬∧¬∧¬∨ 654321 ZZZZZZ Fig. 4.8e 5 

(4.58)

 

There are 5 considered graphs, therefore 3 ≥ log25 binary variables are necessary to generate 

the binarily minimal MINLP representation. Using the three new binary variables, any integer 

variable l can be expressed according to Eq. 4.59: 

3
~

2
~

1
~

421 zzzl ⋅+⋅++=  (4.59) 

Then the set of integer variables Ql can be defined as in Eqs. 4.60: 
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For example, the graph shown in Fig. 4.8d is represented by l=4 via Eqs. 4.58-4.60. 

According to Eq. 4.59, variable l can take the value 4 if 
~
z =[1, 1, 0]. It means that Q4=0 and 

all the other Ql–s take positive integer value (Q1=2; Q2=1; Q3=1; Q5=3).  

In the next step, the BMR is transformed into BMMR. Only those equations are changed 

which contain binary variables (Eqs. 4.26-4.32). The transformed equations of the input 

streams are given in Eqs. 4.61. 

5,4,304.20 2 =≤≤ lQx l
in  (4.61a) 

2,104.22 =−≤− lQx l
in ε  (4.61b) 

5,2,153.10 3 =≤≤ lQx l
in   (4.61c) 

4,353.13 =−≤− lQx l
in ε  (4.61d) 

inx2 takes positive value if Unit 2 exists. According to Eq. 4.58, Unit 2 exists if l=1 or l=2, and 

does not exist if l=3, l=4, or l=5. Consider, for example, the case where l=3 and Unit 2 does 

not exist. Q3=0 according to Eq. 4.60, and the other Ql (l≠3) variables take positive integer 

value. The three different equations denoted by Eq. 4.61a are detailed in Eqs. 4.62a-c. 

Variable inx2  is forced in Eq. 4.62a to take the value 0. Q4≥1 and Q5≥1 in the two other 

Eqs. 4.62b-c; therefore 0≤ inx2 ≤M, where M is a number not smaller than the upper bound 

(2.04) of inx2 . The two equations of Eq. 4.62b are detailed in Eqs. 4.63a-b: If l=3 then Q1≥1 

and Q2≥1; therefore, these equations are satisfied by the assignment inx2 =0. 

32 04.20 Qxin ≤≤  (4.62a) 

42 04.20 Qxin ≤≤  (4.62b) 

52 04.20 Qxin ≤≤  (4.62c) 

ε−≤− 12 04.2 Qxin  (4.63a) 

ε−≤− 22 04.2 Qxin  (4.63b) 

Another example is the case where l=1 and Unit 2 exists. Q1=0 and Ql≠1 ≥ 1 in this case. 

Variable inx2  has to take a positive value not smaller then ε, according to Eq. 4.63a. But none 

of the other Eqs. 4.62a-c and 4.63b effects the value of inx2 ; thus, inx2  can take any value in 

interval [ε, ( inx2 )UP=2,04]. 



4. Graph representations and mathematical models 

 

 96

Eqs. 4.61c-d work similarly. Variable inx3  is positive if Unit 3 exists and if l=3 or 4, according 

to Eq. 4.58. If l=1, 2 or 5 then Unit 3 does not exist, and Eq. 4.61c forces inx3  to take value 0. 

If l=3 or 4 then Unit 3 exists and inx3  can take any value in interval [ε, ( inx3 )UP=1.53].  

Similar equations can be written for the output streams (Eq. 4.64), for the fix and variable 

costs (Eqs. 4.65-4.66), and for the functions of the output streams and costs (Eqs. 4.67-4.69). 
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The transformation is the same in case of all the equations. If an equation contains the factor 

zm, it is substituted by a set of equations which contains unique Ql, where l is the index of a 

considered graph that does not contain unit m. Similarly, equations containing the factor (1-zm) 

are substituted by sets of equations, which contain unique Ql, where l is the index of a 

considered graph that contains unit m. 

 

As a result of the above transformation, the MINLP representation becomes binarily minimal 

because it uses the minimal number of binary variables. But it is still not an ideal 

representation. Combination of three binary variables can take 23=8 different values. Thus, 

variable l can also take 8 different values, according to Eq. 4.59, whereas there are only 5 

considered graphs. In the cases of 
~
z =[1, 0, 1], [0, 1, 1], and [1, 1, 1], variable l takes value 

l=6, 7 and 8, respectively. But these values of l do not denote considered graphs, therefore 

these values have to be excluded from the representation. This can be done by inserting 

integer cuts in the form of Eqs. 4.70:  
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 (4.70) 

After adding Eqs. 4.70 to the representation, it represents the considered graphs only, thus it is 

ideal. Since, in the same time, it uses the minimum number of binary variables, this 

representation is binarily minimal and ideal. Therefore, it is abbreviated as BMIMR. 

The above procedure is just one possible method for generating BMIMR; there may be 

several others. The main advantage of this method is that no more nonlinear equations are 

added to the representation. On the other hand, relaxation of the Big M equations becomes 

worse in this way. However, decrease of the total running time is expected because of 

decreasing the number of the main (outer) iterations. 
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4.9. Example 4.1 – Computational results 

Here the comparison of the different models outlined above according to the computational 

results with the same example problem hitherto discussed. For this aim, the synthesis problem 

of Kocis and Grossmann (1987) is studied. 

First, the MINLP representation originally given by Kocis and Grossmann (“MR of Kocis”) 

was solved, for comparing the running time. Second, another MINLP representation (“MR”) 

was constructed by first constructing the BMR of the problem and then excluding the 

redundant and unnecessary equations. Third, the non-considered graphs were excluded from 

this MR by inserting logical constraints; so that it became ideal (“IMR”). Finally, the binarily 

minimal and, in the same time, ideal MINLP representation (“BMIMR”) was generated via 

using minimal number of binary variables. 

These four representations were solved on a Sun Sparc Station, using GAMS DICOPT++ 

solver (Brooke et al., 1992; Viswanathan and Grossmann, 1990). All the binary variables 

were assigned the initial value 0.5 in each case. The stop criterion was set to “STOP 0” 

because of the presence of non-linear equations. This parameter value results in stopping the 

iteration only if the MILP subproblem becomes infeasible. The solution times and results are 

collected in Table 4.2.  

 

Table 4.2. Solution times in Example 4.1 
representation 

 
objective 

value 
number of 
iterations 

solution time 
(s) 

NLP 
(s) 

MILP 
(s) 

NLP/it. 
(s) 

MILP/it. 
(s) 

MR of Kocis -1.923 8 0.98 0.61 0.37 0.076 0.046 
MR -1.923 16 2.37 1.18 1.19 0.074 0.074 
IMR -1.923 12 1.70 0.86 0.84 0.072 0.070 
BMIMR -1.923 5 0.92 0.44 0.48 0.088 0.096 

 

The second column of Table 4.2 shows the optimal value of the objective function. The 

number of iterations shows how many main (outer) iterations were done. The solution time is 

given in CPU sec, and is also broken down to NLP and MILP subproblems. The average NLP 

and MILP CPU time, per iteration, is given in the last two columns, for comparison. 

The same optimum was found in each case. This solution is shown in Fig. 4.15. This graph is 

represented by l=4 in our BMIMR, as detailed in an earlier section. 

16 iterations were needed, using MR, to consider all the feasible MILP subproblems. The 

number of iterations decreased to 12 as a results of using IMR instead (the non-considered 

graphs were excluded). The solution time of the NLP and MILP subproblems, and therefore 

the total solution time as well, decreased by about 28-30 %. Using minimum number of 
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binary variables (BMIMR) resulted in decreasing the solution time by 46 %. In the same time, 

a small increase in the solution time per iterations is observed. This effect may be caused by 

three factors: (1) There are more equations in BMIMR than in IMR; therefore, the NLP-

problems became greater. (2) The relaxation is not so good in this case. (3) The number of 

equations containing binary variables also increased; therefore, the MILP subproblems 

became more complex. On the other hand, only 6 iterations were necessary in this case to 

investigate all the feasible MINLP subproblems, thanks to having less number of binary 

variables. This is, perhaps, why the total solution time decreased.  

 

Unit 1
Type A

Unit 3
Type C

Unit 5
Type E

Unit 6
Type F

1.52 1.11

1.00

 
Figure 4.15. The optimal solution of Example 4.1 

 

The MINLP representation of Kocis and Grossmann (1987) is binarily minimal because it 

uses no more than 3 binary variables. We suspect, this is the reason why applying MR of 

Kocis involved faster solution than MR and IMR did. On the other hand, it is not ideal 

according to the fourth criterion because it represents graphs including Unit 2 and Unit 3 

simultaneously, which are non-considered graphs in our example. The most probable reasons 

that resulted in 6 % faster solution of our BMIMR than MR of Kocis, even against the 

somewhat worse relaxation of the MILP subproblems, are the following two properties: 

(1) BMIMR is, according to its name, ideal representation, i.e. all the non-considered graphs 

are excluded from the search space. (2) Only some of the variables are given upper bounds in 

MR of Kocis. 

In this example just one method was applied for constructing IMR and BMIMR. The same 

methodology can be applied to any MINLP problem, but not always will, perhaps, improve 

the numerical properties of the solution procedure. The number of necessary iterations is 

decreased to its third in one case, and the solution time is decreased to 39%, even for this 

rather small example, by idealizing the representation. 
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4.10. Example 4.2 – Pervaporation system 

Here the discussion of the membrane subsystem of an industrial distillation and membrane 

hybrid system of ethanol dehydration, published by Szitkai et al. (2002), is presented. The aim 

with this example is to show how idealization of the MINLP representation and reduction of 

the number of binary variables result in both faster solution and essential increase in the 

problem scale solvable with the commercial MINLP solvers. 

The ethanol dehydration system has two main parts (Fig. 4.16): a distillation column and a 

pervaporation system. The top product of the column is ethanol-water mixture of near 

azeotropic composition, and is fed to the first section of a membrane train. The membrane 

train is a series of several sections each containing a set of parallel connected membrane 

modules having the same inlet in that section. The retentate streams of the membrane modules 

are collected; a part is led away as product, whereas the other part is fed to the next section of 

membranes through a heat exchanger. The permeate streams of the membranes are also 

collected and mixed to the feed of the distillation column.  
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Figure 4.16. Superstructure of the ethanol dehydration system. 
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In this example the membrane subsystem is considered alone, with given distillate properties. 

The flowrate of the feed to the membrane subsystem is 50 kg/hr; and it contains 10.05 mol % 

of water. The target is to reach 4 mol % of water in the final retentate. The problem originally 

presented by Szitkai et al. (2002) is simplified so that here the flowrates and the 

concentrations as the only parameters of the flows are considered. The main difference is in 

the objective function (Eqs. 4.71). 
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 (4.71) 

where UNITSma is the number of membrane modules in section ma. 
 

The first step in solving this problem is defining a superstructure. For this aim, we constraint 

the membrane system in a “square” shape of scale nmax. The system consists of maximum nmax 

number of sections, and in each section maximum the same nmax number of membrane 

modules can be built in. The membrane modules are modelled as if they were all built up 

from three membrane cells of 1/3 m3 surface. 

The R-graph representation of the superstructure is generated as follows. The supergraph for 

five membrane sections and five membrane units in each section (a 5 × 5 system) is shown in 

Fig. 4.17a. There is a source unit 'Feed', and there are two sink units ('Product' and 'Permeate') 

in the supergraph. Each membrane module is modelled as a unit with one input port and two 

output ports. Output port 1 is used for releasing the retentate, and output port 2 is for the 

permeate.  

Rév et al. (2005) mentioned that the use of mixer and splitter units is not recommended, 

because this may lead to redundancy. In order to avoid constructing an unnecessarily 

complicated supergraph, however, here mixers and splitters were introduced in such a special 

arrangement that does not introduce by-pass redundancy. This is achieved by leading all the 

by-pass lines to the final product sink unit 'Product'. After each section there is a 

mixer/splitter unit, denoted by S, which collects the retentate from the modules in that section, 

and splits it between the modules of the next section and sink unit 'Product'. Similarly there is 

a mixer (denoted by M), which collects the permeate of each section, and leads it to the sink 

unit 'Permeate'. The retentate mixer-splitter unit after the last section is inserted in order to 
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have the same model for each section. The ratio of one of its output streams to its input stream 

will be fixed to a constant in each MINLP representation.  
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Figure 4.17a. R-graph of the superstructure in Example 4.2 

 

A simplified visualization of the R-graphs is applied from here on. The membrane units are 

denoted by rectangles, the mixer and mixer-splitter units ('M' and 'S'), as well as the source 

unit 'Feed' and the sink units 'Permeate' and 'Retentate' are omitted. The corresponding 

streams are also omitted, and only the main streams are shown. The direction of the streams 

are also omitted, the edges are always directed from left to right. Shaded rectangles represent 

built in membrane modules, whereas white rectangles denote empty places of modules. For 

example, a simplified visualization of the 5×5 supergraph is shown in Fig. 4.17b. 

When writing the term 'graph' or 'structure', I always think the full graph version. For example, 

when calling Fig. 4.17b 'graph' I mean the graph shown in Fig. 4.17a. 

 

 
Figure 4.17b. Simplified visualization of R-graph representation 

 

According to engineering experience, the number of parallel modules need not be increased as 

the material flows downstream. Such a structure would not be optimal. Therefore, only those 



4. Graph representations and mathematical models 

 

 103

structures will be considered that are characterised with non-increasing number of membrane 

modules in consecutive membrane sections. For example, the graph in Fig. 4.18a represents 

non-considered structure (Fig. 4.18b) because there are more membrane modules in the 

second section than in the first section. This structure includes 8 membrane modules. The 

graph representation of a considered structure (Fig. 4.19b) with the same number of 

membrane modules (i.e. 8) is shown in Fig. 4.19a. 
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Figure 4.18a Graph of a non-considered structure 

 

 
Figure 4.18b A non-considered structure 
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Figure 4.19a Graph of a considered structure 

 

 
Figure 4.19b A considered structure 
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4.10.1. Conventional MINLP representation 

In this section the construction of an MINLP representation of Example 4.2 according to the 

conventional approach is presented. 

Binary variables are applied to represent the existence of the membrane modules. If zma,mb=1 

then place mb of section ma is occupied by a membrane module, i.e. that module exists, 

whereas it is not occupied if zma,mb=0. (Here ma and mb may run from 1 to nmax, 

independently.) The same approach is applied in the BMR representation of R-graphs. 

However, the MINLP representation used here is not BMR because the redundant and 

unnecessary equations are excluded. Therefore, this MR is called Conventional MINLP 

Representation, and denoted by CMR  

GAMS DICOPT++ with CONOPT NLP-solver and OSL MINLP-solver on a Sun Sparc 

Station were used for solving this CMR. The initial value for each binary variable was 0.5. 

Maximum 50 main iterations, and in all the iterations maximum 50000 iteration steps, were 

allowed. The CMR has been solved first with nmax=5, and then with increased nmax. The 

solution times and results are collected in Table 4.3; the optimal solutions are shown in 

Figs. 4.20-4.22. 

 

Table 4.3. Results of CMR 

nmax cost number of solution time NLP MILP NLP/it. MILP/it. 
 (USD/yr) iterations (s) (s) (s) (s) (s) 

non-
ideality 

5 4619 7   8.42 0.39   8.03 0.056   1.147 11515 
6 4619 3 10.77 0.34 10.43 0.113   3.477 207490 
7 4619 3 39.65 0.47 39.18 0.157 13.060 3784425 
8 - - - - - - - 69023979 

 

The problem size nmax, as an upper limit of both the consecutive membrane sections and of the 

number of parallel modules in each section, is shown in the first column. The ‘cost’ column 

shows the total cost found in the optimal solution. The solution time is broken down into NLP 

and MILP subproblem time; these subtime values are also given as average values related to 

iterations. The non-ideality of the representation, i.e. how many non-considered graphs are 

also represented by the CMR, is given in the last column. The solution consists of 11 

membrane modules in each case, as is shown in Figs. 4.20-4.22, corresponding to the lines of 

Table 4.3. For nmax =8, and for bigger problems, the solver does not find integer solution 

within the iteration limit. 
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Figure 4.20. Optimal solution with CMR, nmax =5 

 

 
Figure 4.21. Optimal solution with CMR, nmax =6 

 

 
Figure 4.22. Optimal solution with CMR, nmax =7 

 

The non-ideality of the representations is incredible high, as is seen in the last column. There 

are two reasons of this great non-ideality: 

(1) There is not any equation in CMR that would force the solution to satisfy the criterion of 

considered structures, i.e. the non-increasing number of membrane modules in consecutive 

membrane sections. On the other hand, each solution in Figs. 4.20-4.22 agrees this 

assumption; therefore, this criterion seems to be right. 

(2) CMR represents incredible high number of isomorphic graphs; and most of them are non-

considered graphs. Consider, for example, a system with maximum 5 sections, and maximum 

5 modules in each section (nmax =5). If there is only one membrane module in the actual 

structure, and if the criterion of non-increasing number of membrane modules in consecutive 

membrane sections is satisfied then the structure can be represented with 5 isomorphic graphs 

because that single module can be placed in any of the possible places in the first section. This 

single unit cannot be put in the second or a later section, because in this case there was no 
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route from the feed to that unit. Two of these 5 graphs are shown in Fig. 4.23. These graphs 

represent the same structure. It follows that the structural multiplicity of the structure 

consisting of one membrane is 5 in CMR, in case of nmax =5. But only one of these isomorphic 

graphs is a considered graph, the others are non-considered ones. As the CMR represents all 

the feasible graphs, it represents the non-considered graphs as well; therefore, CMR is not an 

ideal representation.  

 

 
Figure 4.23. Isomorphic graphs 

 

The number of represented graphs (nrg) and that of the considered graphs (ncg) are needed to 

calculate the non-ideality NI=(nrg–ncg)/ncg of a representation. Determining them analytically 

is a rather complicated task. I am content with approximating non-ideality measures for 

comparing the problems according to this viewpoint. Therefore, the non-ideality is estimated 

for nmax =2, 3, 4, and a trendline is set in logarithmic plot. The non-ideality of the 

representation can be estimated for bigger problems, as well, by applying approximating 

equations of this trendline (Farkas, 2001). 

The NLP solution time per iterations increases with the size of the problem (nmax) linearly, 

whereas the MILP solution time per iterations increases exponentially, as is shown in 

Fig. 4.24.  

The linear increase of the NLP solution time per iterations is caused by the increase of the 

size of the problem and the equation system. The non-ideality (see Table 4.3) and the number 

of binary variables increase exponentially with the size of the problem; therefore, the search 

space of the MILP problem also increases exponentially. That is the reason of the exponential 

increase of the MILP solution time per iterations. The non-ideality increases drastically with 

increasing problem size, and this is why the problem becomes insolvable in case of 8×8 

membrane systems and above.  
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Figure 4.24. Solution times per iterations in CMR 

 

4.10.2. Exclusion of the non-considered structures 

Non-ideality can be decreased by excluding the representation of those graphs, from the 

MINLP representation, that represent non-considered structures. Considered structures are the 

structures with non-increasing number of membrane modules in consecutive membrane 

sections. (Refer to Figs. 4.18-4.19, and the corresponding notes in the text.) The search space 

can be decreased by excluding some of, or all, the, graphs representing non-considered 

structures 

In order to exclude the representation of the graphs of non-considered structures from the 

representation, Eq. 4.72 is added to CMR. This equation forces the solution to satisfy the 

criterion of non-increasing number of membrane modules in consecutive membrane sections. 

This representation is called NSXMR (Non-considered Structures eXcluded MINLP 

Representation). 
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maxmax

 (4.72) 

Problems of greater scale are expected to be solvable by applying MR with decreased non-

ideality. Therefore, case nmax=8, which was infeasible by CMR, was solved using NSXMR. 
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Solution time values are collected in Table 4.4; the optimal solution is shown in Fig. 4.25. 

The non-ideality of the representation was estimated in the same way as in the case of CMR. 

 

Table 4.4. Results of NSXMR 

nmax cost number of solution time NLP MILP NLP/it. MILP/it. 
 (USD/yr) iterations (s) (s) (s) (s) (s) 

non-
ideality 

8 4619 3 125.08 0.67 124.41 0.223 41.470 706299 
9 4619 - - - - - - 6137574 

 

The non-ideality of NSXMR with nmax =8 is smaller by two orders of magnitude, comparing 

to CMR. Even more, it is smaller than the non-ideality of CMR in case of nmax =7. That is 

why the 8×8 problem is solvable using NSXMR.  

 

 
Figure 4.25. Optimal solution with NSXMR, nmax =8 

 

Non-ideality of NSXMR with nmax =9 is two times greater than that of CMR with nmax =7. 

CMR with nmax =7 contains 109 equations and 147 variables, whereas NSXMR with nmax =9 

consists of 146 equations and 205 variables; i.e., their solutions are approximately of the same 

difficulty. This is why the 9×9 problem is not solvable using NSXMR. 

 

4.10.3. Ideal MINLP representation 

The non-ideality can be further decreased by adding more inequality equations to NSXMR in 

order to exclude the representation of all the non-considered isomorphic graphs from the 

representation. Isomorphic graphs represent the same structure; therefore, only one of them is 

considered, whereas the other graphs are non-considered ones. By excluding these non-

considered graphs from the MINLP representation, it becomes ideal. 

The representation of non-considered graphs can be excluded from the representation by 

adding the criterion that the membrane modules should fill in the free places of the actual 
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section in a queue. In other words: If there are h membrane modules in a section, these should 

be put to the first h places. This criterion can be expressed in algebraic form with the help of 

the binary variables: Each binary variable of a module in a section should not be less than the 

binary variable of the next module in the same section. This criterion is expressed with 

Eq. 4.73. 

1,...,2,1;,...,2,11,, −==≥ + maxmaxmbmambma nmbnmazz  (4.73) 

 

Consider, for illustration, the two isomorphic graphs shown in Fig. 4.28; these graphs 

represent the same structure. The graph in Fig. 4.28a does not satisfy Eq. 4.73 because, for 

example, the binary variable of the second module in the first section z1,2=0 is smaller than the 

binary variable of the third module of the same section z1,3=1; therefore, this graph is not 

represented in the Ideal MINLP Representation. The graph in Fig. 4.28b satisfies Eq. 4.73. 

There is no other graph that would be represented and be isomorphic with this one. This is the 

only represented graph of all its isomorphic graphs. This applies to all the other represented 

graphs, as well. The representation of all the isomorphic graphs are excluded from the 

representation. It follows that the representation becomes ideal (IMR) by inserting Eq. 4.73 to 

NSXMR. 

As the non-ideality of the representation is decreased to 0 (ideal representation), problems of 

greater scale are expected to be solvable. First the case of nmax =9, insolvable by NSXMR, 

was solved using IMR, and then the size of the problem was increased. The solution times are 

collected in Table 4.5, and the solutions are shown in Figs. 4.27 and 4.28. The non-idealities 

are not indicated in Table 4.5 because the representation is ideal, and thus the non-ideality is 0. 
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Figure 4.26a. A non-considered graph  Figure 4.26b. A considered graph 
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Table 4.5. Results of IMR 

nmax cost number of solution time NLP MILP NLP/it. MILP/it. 
 (USD/yr) iterations (s) (s) (s) (s) (s) 

9 4619 4 4.08 0.76 3.32 0.190 0.830 
10 4619 3 2.65 0.85 1.80 0.283 0.600 
11 - - - - - - - 

 

Solution was found in case of nmax =9 and 10; the 11×11 problem was found insolvable with 

IMR. 

The solution time of the NLP subproblems slightly increased because the number of equations 

and variables were increased with the problem size. On the other hand, the search space and 

the solution time of the MILP subproblems were decreased drastically, by two orders of 

magnitude, as a result of excluding the representation of the isomorphic graphs from the 

representation. 

 

 
Figure 4.27. Optimal solution with IMR, nmax =9 

 

 
Figure 4.28. Optimal solution with IMR, nmax =10 
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The maximum size of problems solvable with CMR was 7×7=49. The solvable size was 

increased by one, to 8×8=64, by excluding the representation of the graphs of non-considered 

structures (using NSXMR). And finally, even the 10×10=100 problem became solvable, and 

solution time was decreased drastically, as a result of excluding the representation of the 

isomorphic graphs and using ideal representation (IMR). No further constraints can be added 

to the representation because the representation is already ideal. Thus, the size of the solvable 

problems cannot be increased further this way. 

 

4.10.4. Decreased number of binary variables 

Further advance is expected by decreasing the number of binary variables. The minimum 

number of binary variables is suggested to use. However, this minimum number cannot be 

calculated in this case because the number of represented graphs is not known exactly. We 

have only an approximation for this minimum. But any kind of decrease in the number of 

binary variables is expected to enhance the solution.  

A possible way to decrease the number of binary variables is using minimum number of 

binary variables in each section. The number of membrane modules in a section can be 

expressed as the sum of the binary variables in the section (Eq. 4.74) if either CMR, NSXMR, 

or IMR is applied: 

max

n

mb
mbmama nmazUNITS

max

,...,2,1
1

, == ∑
=

 (4.74) 

In order to use minimal number of binary variables in section ma, the number of membrane 

modules is expressed in binary number system, where the binary variable xmaz ,

~
 denotes the 

binary digit belonging to 2x-1: 

4,

~

3,

~

2,

~

1,

~
842 mamamamama zzzzUNITS ⋅+⋅+⋅+=  (4.75) 

The use of Eq. 4.75 is shown in Fig. 4.29. There are five membrane modules in the first 

section. This can be expressed with the help of new binary variables using Eq. 4.76. The 

number of membrane modules in the second and third sections can be calculated similarly. 

508140211842 4,1

~

3,1

~

2,1

~

1,1

~

1 =⋅+⋅+⋅+⋅=⋅+⋅+⋅+= zzzzUNITS  (4.76) 

Each variable UNITSma can take integer value from 0 to 15, as a result of Eq. 4.75. But, as 

maximum nmax modules can be built in a section, an upper bound is given to UNITSma: 

maxma nUNITS ≤  (4.77) 
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Figure 4.29. A graph showing the use of Eq. 4.75 

 

The graphs of non-considered structures were earlier excluded from the representation by 

Eq. 4.72. This criterion has to be reformulated because of the new binary variables: 

1,...,2,11 −=≥ + maxmama nmaUNITSUNITS  (4.78) 

Eq. 4.73 applied to exclude the isomorphic graphs from representation when using IMR, is 

not necessary when the new binary variables are used because only the number of membrane 

modules in a section is determined by these variables, and not the actual placement of the 

modules themselves. Therefore, isomorphic graphs cannot be represented, and Eq. 4.73 is 

omitted. 

By using Eqs. 4.75, 4.77, and 4.78, the representation becomes ideal because only considered 

graphs are represented. This representation is thus ideal and is characterised with a decreased 

number of binary variables. Therefore this is referred to as ‘Binarily Decreased Ideal MR’ 

(BDIMR). 

In case of nmax =11, 121 binary variables were used in IMR, but the optimum could not be 

found. Using BDIMR, new binary variables are assigned to all sections; therefore, 4×11=44 

binary variables are used. Thus, the number of binary variables is decreased almost to its 

fourth. 

Approximately 3.99E+8 considered graphs are potentially present in a 16×16 membrane 

system. For constructing binarily minimal representation, log2(3.99E+8) = 28.58 ≤ 29 binary 



4. Graph representations and mathematical models 

 

 113

variables ought to be used. Instead, nmax×5=90 binary variables are used in BDIMR. The 

minimal number of binary variables is computed using an estimate from below; therefore, it is 

assumed that our BDIMR is not a binarily minimal representation. 

BDIMR was first applied to a nmax =11 membrane system. The size of the problem was then 

increased. In case of nmax =16, Eq. 4.75 is extended so that UNITSma can take the value 

above 15: 

5,

~

4,

~

3,

~

2,

~

1,

~
16842 mamamamamama zzzzzUNITS ⋅+⋅+⋅+⋅+=  (4.79) 

The results are shown in Figs. 4.30 – 4.31, the solution times are collected in Table 4.8. From 

nmax =17 an on, the problem is insolvable. 

 

Table 4.8. Results of BDIMR 

nmax cost number of solution time NLP MILP NLP/it. MILP/it. 
 (USD/yr) iterations (s) (s) (s) (s) (s) 

11 4619 4   6.60 2.42 4.18 0.605 1.045 
12 4619 4   7.84 2.69 5.15 0.673 1.288 
13 4619 4   8.71 3.41 5.30 0.853 1.325 
14 4619 3   6.88 4.37 2.51 1.457 0.837 
15 4619 3   8.15 5.83 2.32 1.943 0.773 
16 4619 4 13.28 6.63 6.65 1.658 1.663 
17 - - - - - - - 

 

 
Figure 4.30. Optimal solution with BDIMR, nmax =11, 12, 13, 16 

 

 
Figure 4.31. Optimal solution with BDIMR, nmax =14, 15 

 

The NLP solution time increases with the problem size. In case of nmax =14 and 15, the NLP 

solution time per iteration is a bit greater than expected because of the smaller number of 

iterations. The MILP solution time increases almost linearly with a very small slope, except in 

the cases nmax =14 and 15, where MILP time decreased almost to its third. 
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4.10.5. Comparison of the representations 

Four MINLP representations were applied to the same pervaporation system: a conventional 

representation (CMR) that is similar to the basic representation BMR, but the redundant and 

unnecessary equations were already excluded, a representation excluding the representation of 

the non-considered structures (NSXMR), an ideal one (IMR), and an ideal and binarily 

decreased representation (BDIMR). Each representation is an improvement of the preceding 

one.  

 

Table 4.9. Summary of the computation results for Example 4.2 
MINLP nmax cost number of solution time NLP MILP NLP/it. MILP/it. 

repr.  (USD/yr) iterations (s) (s) (s) (s) (s) 
non-

ideality 

5 4619 7     8.42 0.39     8.03 0.056   1.147 11515
6 4619 3   10.77 0.34   10.43 0.113   3.477 207490
7 4619 3   39.65 0.47   39.18 0.157 13.060 3784425

CMR 

8 - - - - - - - 69023979
8 4619 3 125.08 0.67 124.41 0.223 41.470 706299NSXMR 
9 4619 - - - - - - 6137574
9 4619 4     4.08 0.76     3.32 0.190   0.830 0

10 4619 3     2.65 0.85     1.80 0.283   0.600 0
IMR 

11 - - - - - - - 0
11 4619 4     6.60 2.42     4.18 0.605   1.045 0
12 4619 4     7.84 2.69     5.15 0.673   1.288 0
13 4619 4     8.71 3.41     5.30 0.853   1.325 0
14 4619 3     6.88 4.37     2.51 1.457   0.837 0
15 4619 3     8.15 5.83    2.32 1.943   0.773 0
16 4619 4   13.28 6.63    6.65 1.658   1.663 0

BDIMR 

17 - - - - - - - 0
 

The solution time data and results of all the MINLP representations are summarized in 

Table 4.9. With the exception of case nmax =5, the number of iterations is either 3 or 4 in all 

the cases.  

The NLP solution time per iterations (Fig. 4.32) increases exponentially with the problem size. 

This is caused most probably by the increasing number of equations. The number of binary 

variables does not have any effect on the NLP solution time because the binary values are 

fixed in the NLP subproblems. 

The MILP solution time per iterations increases exponentially with the problem size in case of 

CMR and NSXMR. Data for CMR are shown, but the point of NSXMR is not represented in 

Fig. 4.33 because of its high value. The reason of this exponential increase lies in the 

exponential increase in the number of non-considered but represented isomorphic graphs. The 

representation of the isomorphic graphs are excluded from the representation using IMR and 
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BDIMR, and the increase of MILP solution time became linear. The solution time with 

BDIMR at nmax =16 (including maximum 256 membrane modules) is comparable with the 

solution time with CMR at nmax =5 (including maximum 25 membrane modules). 
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Figure 4.32. NLP solution times per iterations 
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Figure 4.33. MILP solution times per iterations 
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4.11. Summary 

An automated procedure for generating the Basic GDP Representation and the Basic MINLP 

Representation has been presented.  

First the Basic GDP Representation is formulated, based on the R-graph representation of the 

superstructure. BGR consists of the constraints of the units as logical expressions, the 

balances of the input and output ports, and the objective function. 

The Basic MINLP Representation is formed automatically from BGR by using binary 

variables instead of the logical ones. BMR can be a reference representation of different MR-s; 

it is generated automatically from the supergraph, and it represents all the subgraphs of the 

supergraphs. An MR represents the supergraph if a bijective mapping can be given between a 

subset of the feasible region of MR and the feasible region of BMR.  

This procedure is presented through a small synthesis example. 

The chance of finding the global optimum can be increased by excluding the non-considered 

graphs from the representation, and by decreasing the number of binary variables. 

An MINLP Representation is ideal if it represents the considered graphs only. It can be 

generated by excluding the representation of the non-considered graphs, by applying 

constraints including logical or binary variables only. 

The number of binary variables can usually be decreased by reformulating the MINLP 

representation. The MR is binarily minimal if it uses the minimum number of binary variables 

to make distinction between different structures. It means the use of nbv number of binary 

variables in case of ng number of represented subgraphs, where nbv is the lowest integer 

number, which satisfies g
n nbv ≥2 . 

The methods and definitions are demonstrated on a small synthesis problem, and on an 

industrial example. It is shown that idealization of MR and the decrease of the number of 

binary variables result in lower computational time, and greater maximum solvable problem 

size. 
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5. R-graph-based superstructure and MINLP model for 
distillation column synthesis 
In the previous chapter, it was shown that an MINLP model can be improved by idealization, 

and by decreasing the number of binary variables. It was performed by adding new 

constraints containing only new binary variables, and by transforming the old constraints and 

old binary variables. The results demonstrated that, using these modifications, the solution 

time can be decreased, and greater problems become solvable. 

However, not only in the step of formulating the MINLP representation can this improvement 

be performed. Sometimes even the superstructure can be generated in a way that the 

formulation of ideal and/or binarily minimal MINLP model does not need extra 

transformation. 

In this chapter, an R-graph based new superstructure, and MINLP representation, are 

presented for distillation column synthesis. During the generation of the superstructure and 

the MINLP, the results of the previous chapter are used. 

 

5.1. R-graph representation of the superstructure 

The R-graph superstructure of a conventional distillation column containing maximum 15 

equilibrium trays is shown in Fig. 5.1. The equilibrium stages are represented by shaded ovals, 

and the units by rectangles. The small circles represent input or output ports of the units. The 

edges, start from output ports and end in input ports represent streams. The edges pointing to 

top denote the heading direction of the vapor flows, the edges directed down represent the 

liquid streams. The hatched squares beside the units containing equilibrium stages represent 

the so-called vapor and liquid transport units; they have transmission roles only. There are 

one source unit (Feed) and two sink units (Dist and Bot). These sink units represent the 

products. The reboiler (Reb) and the condenser (Cond) units have two output ports each; by 

this way, we are able to calculate the reflux and reboil ratio with equations belonging only to 

the particular units.  

In R-graph representation a unit is permanent, by definition, if all the sub-R-graphs contain it. 

Feed, Dist, Bot, Cond, Reb, and the feed stage, are permanent units according to this 

definition; all the others are conditional.  
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Figure 5.1. R-graph representation of the superstructure 
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The number of the equilibrium stages in the kth unit of a column section (calculated bottom up) 

is 2k-1. This arrangement is applied in order to facilitate forming binarily minimal MINLP 

representation, as explained in section 5.6.  

The vapor stream starting e.g. from the vapor output port of the first unit (containing one 

equilibrium stage) above the reboiler can go to the vapor input port of the second unit, and/or 

to the input port of the vapor transfer unit shown left to the second unit above the reboiler 

(this is the 'second vapor transfer unit'). The vapor input port of the third unit can receive 

vapor stream from the vapor output port of the second unit and/or from the output port of the 

second vapor transfer unit. My intention with this arrangement is to provide a tool for by-

passing the second unit, and to by-passing any conditional unit in the column in this way. The 

final target is restricting the set of structures to enable only either the conditional unit in the 

column without the corresponding vapor and liquid transfer units, or to both the 

corresponding transfer units without the conditional unit in the column. This restriction will 

be included in the MINLP model, but is not provided in the supergraph representation. 

Neither is this restriction included in the basic GDP representation, as is discussed in the next 

section. 

 

5.2. Basic GDP Representation 

The Basic GDP Representation is generated according to the R-supergraph (R-graph of the 

superstructure). It contains the unit relations, the balances of the ports, and the objective 

function. No additional constraints are added to the GDP model, therefore it represents all the 

feasible sub-R-graphs of the R-supergraph, and it uses distinct logical variables to each 

conditional units.  

The unit relations of the source unit (Feed; Eq. 5.1) contain the calculation of the molar feed 

flows from the total feed flow and the feed compositions, and the calculation of the molar 

enthalpies of the feed from the temperature of the feed. The unit relations of the sink units 

(Bot, Dist; Eqs. 5.2-5.3) contain only the trivial positiveness constraints. The unit relations of 

the reboiler (Eq. 5.4) and the condenser (Eq. 5.5) include the heat and component balances. 

The purity and recovery constraints are specified here, and the variable cost of the column are 

also calculated here. The unit relations of the fixed feed stage unit (Eq. 5.6) contain the 

MESH equations, and the fix cost of this stage. The column diameter is calculated in the 

reboiler, in the condenser and in the feed stage. The greatest among these diameters is the real 

column diameter. 
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The unit relations of the conditional units contain two sets of equations with logical ‘or’ ( ∨ ) 

relation between them. The first set of equations are taken into consideration when the unit 

exists in a particular structure, in this case the logical variable of the unit is true (Z). If the unit 

does not exist in a structure, then the other set of equations has to be satisfied; in this case the 

logical variable of the unit is false (¬Z). 

The unit relations of the third unit in a column section (containing four equilibrium stages) are 

shown in Eq. 5.7. When the unit exists, then the MESH equations of all the included 

equilibrium stages and the calculation of the fix cost related to this unit are taken into 

consideration. The component material and enthalpy balances are different for the first 

(lowest), the last (uppest) and the inner equilibrium stages, because the inlet vapor/liquid 

stream of the unit ( ksin
c

ksin
c LV ,,,, / ) goes directly to the first/last equilibrium stage of the unit, 

and the outlet liquid/vapor stream ( ksout
c

ksout
c LV ,,,, / ) leaves from the first/last equilibrium stage 

of the unit. 

If the unit does not exist in a structure, then all the component flowrate, enthalpy and cost 

variables related to the unit take zero value. It means, that there are no inlet and outlet. The 

inner variables of the unit (e.g. mole fractions and fugacities) can take any value, they do not 

have any effect to the solution, because all the inlet and outlet variables take zero value. 

The unit relations of units containing more than four equilibrium stages are similar to Eq. 5.7. 

The only difference is, that the set of equilibrium stages is not J4 but Jn, where n is the 

number of stages in the unit. 

The unit relations of the second unit in a column section containing two equilibrium stages 

have two differences from Eq. 5.7. The first is, that the set of equilibrium stages is J2 instead 

of J4. The second difference is, that in that unit there are only two stages (a first and a last); 

therefore, the component material balance and the enthalpy balance of the inner stages are 

missing. 

The unit relations of the first unit in a column section containing only one equilibrium stages 

can be seen in Eq. 5.8. As there is only one stage, there is only one component material 

balance and one enthalpy balance. The set of equilibrium stages in the unit, J1 contains only 

one element, but the set is used because of the analogy with other units containing more 

equilibrium stages.  
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The unit relations of the liquid (Eq. 5.9) and vapor (Eq. 5.10) transport units also contain two 

sets of equations with a logical ‘or’ between them. When a transport unit exists ( V
ksZ ,  or L

ksZ ,  

is true) the inlet stream goes through the unit without any change in concentration or enthalpy. 

When a transport unit does not exist ( V
ksZ ,¬  or L

ksZ ,¬ ) all the inlet and outlet variables take 

zero value; i.e., there are no inlet or outlet streams at all in that case.  
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By definition, not any pure logical restriction is applied in BGR. Conditional units may exist 

simultaneously, according to BGR because it is automatically generated from the supergraph. 
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Figure 5.2a. Component material flowrate variables of the edges 

 

Two variables are attached to each stream between units: component flowrates (dL or dV) and 

component molar enthalpies (hdL or hdV). These variables are shown in Figs. 5.2. The first 

superscript of these variables denotes the type of the unit from which the edge starts, the 
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second superscript denotes the type of the unit at which the edge ends (U=unit containing 

equilibrium stages; T=transport unit; F=feed stage or feed source unit; C=condenser; 

R=reboiler; D=distillate sink unit; B=bottom product sink unit). These variables either have 

three subscripts or merely one, depending on if the edge starts from an output port of a 

conditional unit or from a permanent one, respectively. The only or the first subscript denotes 

the component ( C∈c ). The second subscript (if exists) denotes the column section ( S∈s ), 

and the third one denotes the ordinal number of the unit, where the stream comes from, in the 

column section ( K∈k ). 
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Figure 5.2b. Component material flowrate variables of the edges 

 

The material balances of the input and output ports are expressed by summing the inlet and 

outlet flowrate variables. For example, the material balances of the input and output vapor 

ports of the kth unit containing equilibrium stages in the sth column section are as follow: 
in

ksc
UT
ksc

UU
ksc VdVdV ,,

,
1,,

,
1,, =+ −−  { }first,|,, ≠∈∈∈∈ kkkksc KSC  (5.11) 

TU
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ksc dVdVV ,

,,
,
,,,, +=  { }last,|,, ≠∈∈∈∈ kkkksc KSC  (5.12) 

Similarly, Eq. 5.13 and Eq. 5.14 express the material balances of the input and output port, 

respectively, of the kth vapor transport unit in the sth column section. 
in

ksc
TT
ksc

TU
ksc tVdVdV ,,

,
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,
1,, =+ −−  { }first,|,, ≠∈∈∈∈ kkkksc KSC  (5.13) 

TT
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,,
,
,,,, +=  { }last,|,, ≠∈∈∈∈ kkkksc KSC  (5.14) 

 

The enthalpy balances of the output ports are simple equalities, as it can be seen for the output 

vapor port of the kth unit containing equilibrium stages in the sth column section (Eqs. 5.15-

5.16) and for the output port of the vapor transport unit next to it (Eqs. 5.17-5.18). 
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The molar enthalpy of the inlet streams, in the input ports, of a unit is calculated from the 

molar enthalpy of the streams ending in the input port: 
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( )TT
ksc

TU
ksc

hdV
c

in
ksc hdVhdVhtV ,

1,,
,

1,,,, ,Φ −−=  { }first,|,, ≠∈∈∈∈ kkkksc KSC  (5.20) 

 

These equations may be highly non-convex. In the MINLP representation discussed later, 

however, a unit containing equilibrium stages and the corresponding transport units cannot 

exist simultaneously. In that case, the molar enthalpy of the inlet stream of a unit can be 

simply calculated as the sum of the molar enthalpies carried along the edges from the 

previous transport unit and the previous unit containing equilibrium stages. Such a technique 

can be applied because only one of them can be positive, the other one is constrained to be 

zero. 

The material and enthalpy balances of all the input and output ports can be generated 

similarly. 

 

The objective function is given in our model as the total cost of the column. Since the variable 

cost is calculated in the condenser and the reboiler (cC and cR), and the fix cost related to the 

units is calculated in the unit relations of each unit, the total cost is simply expressed as the 

sum of these cost parts: 

∑∑
∈ ∈

+++=
S Ks k

ks
FCR ccccC ,  (5.21) 

 

Logical relations are used in the unit relations, merely to express the conditionality of the 

conditional units. No other logical constraints are applied in the BGR; hence, it represents all 

the subgraphs of the R-supergraph. 
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5.3. Basic MINLP Representation 

The Basic MINLP Representation (BMR) can be created automatically from the Basic GDP 

Representation (GDP). The logical relations are transformed to algebraic equations, and the 

logical variables (Z) are substituted by binary ones (z). When transforming the BGR to BMR, 

the equations of the permanent units, the material balances of the input and output ports, and 

the objective function, remain unchanged. In contrary, some relations of the conditional units 

are converted to equations including binary variables by certain transforming techniques (e.g. 

Big M, Multi M, Convex hull formulations). The BMR does not include any additional 

constraint; thus, it represents all the subgraphs of the R-supergraph, just like the original GDP 

formulation represents them. 

The detailed BMR of our problem is not presented here because it has only theoretical 

advantage, as a reference representation during a comparison between MR-s. BMR is used in 

the model generation phase only, but not in the optimisation, because it contains several 

redundant and unnecessary equations. 

 

5.4. MINLP Representation 

The BMR derived automatically from the BGR can be simplified by applying some 

modifications, in order to decrease the computational difficulties occurring in the course of 

solution. Experienced engineers can generate an MR directly from BGR. This step is shown 

in this section. 

The logical relations are transformed to algebraic equations, using Big M technique. This 

transformation is shown here on the example of the third unit, containing four equilibrium 

stages, in a column section. When the unit exists in a structure then the unit equations have to 

be satisfied, and if it does not exist then the component flowrate, enthalpy, and cost variables, 

take zero value, according to the unit relations of the third unit in BGR (Eq. 5.7). 

This behaviour of the flowrate variables can be expressed by taking over the material balances 

from BGR, and introducing additional equations enforcing input flowrate variables to take 

zero value when the actual unit does not exist. Not only the input flowrate variables, but all 

the inner and output molar flowrate variables take zero value in this way, as a consequence of 

the balances, when the unit does not exist. Eqs. 5.22-5.26 list the material balances taken over 

from BGR, and Eq. 5.27 is the applied Big M equation forcing the input molar flowrate 

variables to take zero value when the unit does not exist. The binary variable of the unit (zs,k) 
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expresses the existence of the unit; i.e., its value is zero when the unit does not exist. When 

the unit exist, i.e. the binary variable is unity, the input molar liquid and vapor variables can 

take positive value; MLV is the upper bound of the right hand side expression in Eq. 5.27. The 

input liquid and vapor flowrate variables appear in the same Big M constraint in order to use 

as few equations containing binary variables as possible. 
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ksjcksjcksjcksjc LVLV ,,,,,,,,1,,,1, +=+ +−  { }3,|,,, =∈∈∈∈∈ kkkksjc inner KSJ4C  (5.23) 

ksjcksjc
in

kscksjc LVLV ,,,,,,,,,,1, +=+−  { }3,|,,, =∈∈∈∈∈ kkkksjc last KSJ4C  (5.24) 

ksjc
out

ksc LL ,,,,, =  { }3,|,,, =∈∈∈∈∈ kkkksjc first KSJ4C  (5.25) 

ksjc
out

ksc VV ,,,,, =  { }3,|,,, =∈∈∈∈∈ kkkksjc last KSJ4C  (5.26) 

( ) ks
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ksc
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∈C
 KS ∈∈ ks ,  (5.27) 

 

The molar enthalpy variables can be managed similarly. The enthalpy balance can be taken 

invariantly from BGR (Eqs. 5.28-5.32), but an additional Big M constraint is necessary to 

force the input molar enthalpy variables to take zero value when the unit does not exist. As a 

consequence of the form of Eqs. 5.28-5.30, however, the flowrates may take zero value when 

the unit does not exist, because of Eq. 5.27, and the enthalpy balances may be satisfied with 

non-zero molar enthalpies of the streams around the equilibrium stages. If it happens then the 

output stream enthalpy variables have positive value because of Eqs. 5.31-5.32. In such a case 

the streams from non-existing unit have positive enthalpy, involving problems in further 

calculations. To prevent occurring this problem, not only the input, but the output stream 

enthalpy variables also appear in the Big M constraints applied to them (Eq. 5.33). As a result, 

all the input and output stream enthalpy variables of the unit (not of the equilibrium stages 

inside the unit) are set to zero, when the unit does not exist. The enthalpy variables of the 

equilibrium stages in the unit may take positive value in this case, but it does not involve any 

problem in the calculations. 
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The concentration, fugacity, temperature and pressure variables of the equilibrium stages have 

to satisfy the unit relations when the unit exist, but there is not any constraint to them when 

the unit does not exist. These variables can also be constrained to take zero value when the 

unit does not exist. But such constraints could be too strict, and would involve problems in the 

MINLP optimisation to find the optimal solution. Therefore, only those constraints are given 

that enforce the equations in BGR to be satisfied when the unit exists. 

This could be achieved with Big M formula by inserting two inequalities to each variable. 

Such a pair of equations would be for the equation expressing the molar liquid enthalpy in 

function of the temperature, for example, as follow: 

( ) ( )ksj
h
cksjcks

h ThLzM ,,,,,,1 Φ−≤−⋅−  { }3,|,,, =∈∈∈∈∈ kkkksjc KSJ4C  (5.34) 

( ) ( )ks
h

ksj
h
cksjc zMThL ,,,,,, 1−⋅≤Φ−  { }3,|,,, =∈∈∈∈∈ kkkksjc KSJ4C  (5.35) 

The binary variable (zs,k) would take unity, and the left hand side of Eq. 5.34 and the right 

hand side of Eq. 5.35 would take zero when the unit exists; therefore, the molar liquid 

enthalpy would become equal to the function calculated from the temperature. 

 

But, in order to decrease the number of equations containing binary variables, another method 

is suggested. The equation reduced to one side is taken equal to the difference of two non-

negative continuous variables ∆ (Eq. 5.36). For these two variables ∆, a Big M constraint, 

including the binary variable of the unit, is added (Eq. 5.37). These ∆ variables take zero 

value, and the difference of two zero values in Eq. 5.37 will take zero value when the unit 
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exists; therefore, the molar liquid enthalpy has to be equal to the function calculated from the 

temperature. When the unit does not exist, these ∆ variables can take any non-negative value 

below their upper limit. The difference of two non-negative values in the right hand side of 

Eq. 5.36 can take positive, or even negative, value in this case; therefore, the original equation 

need not be satisfied, and the liquid enthalpy variable can take greater or lower value than that 

calculated from the temperature . 

( ) −+ ∆−∆=− ,
,

,
,,,,,, Φ h

ks
h

ksksj
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( )ks
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,
,

,
, 1−⋅≤∆+∆ −+  KS ∈∈ ks ,  (5.37) 

Eq. 5.34-5.35 containing a binary variable are transformed to Eq. 5.36-5.37 with introducing 

two continuous variables (∆-s). As a result, only one of the two new equations contain the 

binary variable, namely Eq. 5.37. This modification resulted in shorter runtime. 

The same ∆ variables are used also for the equations containing vapor enthalpy variables 

(Eq. 5.38). The relaxation of the equations will be a bit worse in this case because the upper 

bounds are not fitted for different variables, but the number of equations containing binary 

variables are further decreased: 
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Analogous Big M equations are written for the other equations containing logical expression(s) 

in the BGR: 
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Each component flow rate (liquid or vapor) is expressed as the product of the total flowrate 

(LIQj,s,k or VAPj,s,k) in the equilibrium stages and the mole fraction (Eqs. 5.46-5.47). These 

equations are applied to calculate the total flow rates LIQj,s,k and VAPj,s,k: 
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ksjcksjksjc xLIQL ,,,,,,,, ⋅=  { }3,|,,, =∈∈∈∈∈ kkkksjc KSJ4C  (5.46) 

ksjcksjksjc yVAPV ,,,,,,,, ⋅=  { }3,|,,, =∈∈∈∈∈ kkkksjc KSJ4C  (5.47) 

 

The cost related to the unit is calculated when the unit exists, and takes zero value when the 

unit does not exist, according to the unit relations in BGR. This can be expressed with two ∆ 

variables and a Big M constraint similarly to Eqs. 5.36-5.45: 
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According to the formulas (Eqs. 5.22-5.33 and Eqs. 5.36-5.49), all the unit relations are 

satisfied when the equilibrium unit exists, and its inlet and outlet streams are of zero flowrate 

and zero molar enthalpy when the unit does not exist. 

All the conditional unit relations containing equilibrium stages, not only those of the 3rd unit 

in the above example, are transformed to algebraic equations in the same way. 

 

The unit relations of the transport units are transformed to algebraic equations applying the 

same principles as above. That is, the material and enthalpy balances are taken over, and 

Big M constraints are added for the input variables, as follow. 

The equations of the liquid transport units are listed below: 
out

ksc
in

ksc tLtL ,,,, =  KS ∈∈ ks ,  (5.50) 

out
ksc

in
ksc htLhtL ,,,, =  KS ∈∈ ks ,  (5.51) 

L
ks

L
c

c

in
ksc zMntL ,,, ⋅⋅≤∑

∈C
 KS ∈∈ ks ,  (5.52) 

L
ks

h
c

c

in
ksc zMnhtL ,,, ⋅⋅≤∑

∈C
 KS ∈∈ ks ,  (5.53) 

The equations of the vapor transport units are listed below: 
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The material and enthalpy balances have to be satisfied even when the unit does not exist 

(Eqs.  5.50-5.51 and Eqs. 5.54-5.55). The Big M constraints are needed to write only for the 

input variables (Eqs. 5.52-5.53 and Eqs. 5.56-5.57) because the output variables take zero 

when the input variables are zero, due to the form of the balances. 

 

The above representation is constructed almost automatically from the GDP, but a small 

enhancement is applied by omitting redundant equations, and it does not include any 

constraint additional to those specified in the GDP representation; thus, it represents all the 

subgraphs of the R-supergraph. However, the numerical behaviour of the MINLP 

representation can be greatly enhanced with some modifications outlined below. 

For this aim, some specific properties of the actual chemical engineering problem are taken 

into account to further improve the numerical behaviour of the MINLP, by tailoring its actual 

form.  

 

First, the equations used for the calculation of the fix cost of the conditional units are strongly 

nonlinear. Calculation of the cost, depending on the number of trays, for each conditional unit 

separately consumes a great effort of computation. Combining these cost functions into a 

single equation is much better idea. Accordingly, all the parts are calculated in the objective 

function, instead of summing up the earlier calculated cost parts, as in Eq. 5.21: 

( ) ( ) ( )DCNQRQCC st
fixcRcC ,Φ+Φ+Φ= , (5.58) 

where Nst is the number of the equilibrium stages in the column.  

 

Second, the number of variables can be decreased by omitting the variables belonging to the 

edges of the R-graph. According to Fig. 5.3, a material balance can be, and are, written 

around the dashed line: 
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Similarly, the enthalpy calculations can be, and are, written in a simpler form, as follow: 
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Figure 5.3. Omitting the edge variables 

 

All the edge variables (dL, dV, hdL, hdV) are omitted in this way, and even the number of 

equations related to the input and output ports (Eqs. 5.11-5.20) is decreased. 

 

5.5. Ideal MINLP Representation 

As mentioned earlier, neither the BGR nor the MR described in section 5.4 includes any 

logical relation or algebraic equation to exclude the representation of the non-considered 

structures; therefore, they represent all the subgraphs of the supergraph, i.e. all the feasible 

structures, not only the considered ones. Accordingly, they represent several non-considered 

structures, as well. The representation of the non-considered structures and their representing 

graphs should be excluded from the MINLP representation in order to decrease the chance for 

incorporating structural redundancy and multiplicity. A representation is called Ideal MINLP 

Representation (IMR) if it represents the considered graphs and considered structures only.  

In the particular case of modelling distillation columns with R-graphs, a unit containing 

equilibrium stages and the two transport units belonging to it do not exist simultaneously in a 

considered structure. This constraint can be expressed by a pair of 'exclusive or' (XOR) 

relations between the logical variables in the following form: 
L
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These logical relations can be expressed by algebraic equation as well (see Raman and 

Grossmann, 1991): 

1,, =+ L
ksks zz  KS ∈∈ ks ,    (5.64) 

1,, =+ V
ksks zz  KS ∈∈ ks ,    (5.65) 

 

The MR described in section 5.4 is made ideal by attaching Eqs. 5.64-5.65 to it. The new 

(ideal) MINLP representation formed in this way represents the considered structures only.  

 

5.6. Binarily Minimal MINLP Representation  

The computational difficulties occurring during the solution of an MILP / MINLP problem 

usually increase with the number of binary variables. Therefore, using as few number of 

binary variables as possible is a good idea. This can be achieved by modifying the MINLP 

representation; but in some cases, like the one here, it can also be achieved by modifying the 

superstructure, and the supergraph. A well shaped supergraph is instructive in forming 

effective MINLP representation. 

As it was mentioned above, an array of nbv binary variables, applied to distinguish structures, 

can take bvn2  different values. This bvn2  has to be at least as large as the number of different 

graphs. If the supergraph includes ng subgraphs, then the minimal number of the binary 

variables needed for making distinction between them is the lowest integer number which 

satisfies Eq. 5.66. 

gbv nn 2log≥  (5.66) 

An MINLP representation applying minimum number of binary variables for distinguishing 

different structures is called Binarily Minimal MINLP Representation (BMMR). 

Consider a distillation column including, for example, 15 equilibrium stages (7 stages above, 

7 stages below, and the feed stage), shown in Fig. 5.1. In the column section between the 

reboiler and the feed stage, selected for an example, 8 different structure variations are 

possible according to the number of equilibrium stages: 0, 1, 2,…, 7 equilibrium stages, in 

this particular case. It follows that 3=log28 binary variables are necessary to describe this 

column section for BMMR. 

The number of equilibrium stages in the kth unit (counted from bottom up) is 2k-1 in the 

superstructure. All the possible stage numbers can be generated with this configuration. For 

example, 3 stages can be assembled using the first and the second unit (Fig. 5.4a), 4 stages are 
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assigned by using the third unit (Fig. 5.4b), 5 stages are assigned by using the first and the 

third units (Fig. 5.4c), and so on. When a unit is not used in a structure, then it is by-passed 

through the transport units. 

 

Cond

 
(a) 

Cond

 
(b) 

Cond

 
(c) 

Figure 5.4. Column section containing different number of equilibrium stages 

 

There are nine binary variables in our example column section: 3 for the units containing 

equilibrium stages, 3 for the liquid transport units, and 3 for the vapor transport units. If the 

number of binary variables were decreased to 3, then the minimum would be reached, and the 

BMMR would be generated. How this decrease has been achieved is shown below. 

In section 5.5, the logical relations between logical variables were rewritten in algebraic form 

between the binary variables of the units containing equilibrium stages and the binary 

variables of the transport units (Eqs. 5.64-5.65). The binary variables in these equations are 

now substituted with the following expressions: 

ks
L

ks zz ,, 1: −=  KS ∈∈ ks ,    (5.67) 

ks
V

ks zz ,, 1: −=  KS ∈∈ ks ,    (5.68) 

 

If the maximal number of equilibrium stages is increased, the number of the conditional units 

and, in turn, the number of binary variables have also to be increased. If the maximum 

number of equilibrium units is increased up to, e.g., 8 in a column section then, according to 

Eq. 5.66, log29 ≈ 3.17 ≤ 4 binary variables have to be used in BMMR. If a fourth unit 

containing 24-1=8 equilibrium stages is added to the superstructure, then the BMMR can be 

generated in the same way as it was done above. Of course, with this fourth unit, the 

maximum number of the units is increased from 8 to 15; therefore, additional constraints are 
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needed to exclude the representation of the non-considered structures (containing 10 to15 

equilibrium stages in a column section). Such a unit containing 8 equilibrium stages can be 

inserted automatically, even in the case of maximum 15 equilibrium stages in a column 

section. 

The MINLP Representation obtained through the above detailed methods uses minimal 

number of binary variables to distinguish the structures; therefore, it is a Binarily Minimal 

MINLP Representation. Nevertheless, it still preserves its ideality, thus it is Binarily Minimal 

and Ideal MINLP Representation (BMIMR), as well. 

 

5.7. Examples 

The BMIMR developed according to section 5.6 is tested from computational point of view 

on three different separation examples. The new model was intended to compare with the 

GDP model of Yeomans and Grossmann (2000a). Since GDP solver was not available for us, 

that GDP model was transformed to MINLP model using Big M technique, and the results 

obtained with that MINLP model was compared to the results obtained with our BMIMR 

model 

All the examples were solved on a Sun Sparc Station using GAMS (Brooke et al., 1992). The 

MINLP solver was DICOPT++ (Viswanathan and Grossmann, 1990). The NLP subproblems 

were solved with CONOPT2; the MILP subproblems were solved with CPLEX. 

In all the examples the cost function of Luyben and Floudas (1994) were applied:  

1000
/),()( payst

fix
CWLPStax DCNUFVQCcQRc

C
ββ Φ⋅+⋅+⋅

=  (5.69) 

)5.17.0(245])76.06(486324615[3.12),( 22 DCNDCNDCDCN ststst
fix +++++=Φ  (5.70) 

where βtax is the tax factor (=0.4); cLPS is the cost of the low pressure steam (=1.1488·10-6 

USD/kJ); cCW is the cost of the cooling water (=3.73·10-8 USD/kJ); UF is the update factor 

(=1.292); βpay is the payback period (=4 yr). 

 

The column diameter is calculated from cross section of the column (A, [m2]): 

π
ADC 2=  (5.71) 

 



5. R-graph-based superstructure and MINLP model for distillation column synthesis 

 

 138

The cross section of the column was determined by the flowrate of the vapor stream and the 

density of the vapor in the reboiler, using the Ff –procession (Kister, 1995): 

V

V

F
mA

ρmax

=  (5.72) 

where Vm  is the mass flowrate of the vapor [kg/s]; Fmax is the F-factor (= Pa2.2 ); and ρV is 

the density of the vapor [kg/m3]. 

The original objective function was divided by 1000 for better scaling. 

 

5.7.1. Example 5.1 

Example 5.1 involves the separation of a benzene-toluene mixture. Equimolar feed is 

considered, i.e. the charge composition is xch=[0.5; 0.5]. The feed is 100 kmol/h. The 

specified purity is 0.98 benzene in the distillate, and 0.98 toluene in the bottom product. 

Atmospheric column is used, P=760 torr. The mixture is assumed be ideal, and constant 

molar overflow is also assumed. 

The vapor-liquid equilibrium is calculated according to the Raoult-Dalton equation: 

c
V

c yPf ⋅=  (5.73) 

)(0 Tpxf cc
L

c ⋅=  (5.74) 

where pc
0(T) is the vapor pressure of component c. Vapor pressure pc

0(T) is calculated with 

Antoine equation: 

( )
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BAp

c

c
cc +

−= , (5.75) 

where Ac, Bc and Cc are the Antoine constants of component c. The applied constants 

(Gmehling et al., 1977) are collected in Table A2 in Appendix. 

The maximum number of equilibrium stages in the column was set to 63 (31 above, 31 below 

the feed, and the feed stage).  

The initial values of the variables were calculated by modelling the process using the 

maximum number of stages and the specified product purity. The modelling software was 

ChemCAD. The stopping criterion was the execution of the specified maximum number of 

iterations. 
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Table 5.1. Model characteristics of Example 5.1 

Model No. of 
eqs. 

No. of  
non-lin. eqs. 

No. of 
vars. 

No. of bin. 
vars. 

Yeomans-based MINLP 2051 514 1272 60 

New 1592 519 1449 10 

 

Table 5.2. Computational results of Example 5.1 

Model Nst DC Ref Objective 
function No. of iters. Solution. time 

(CPU s) 

Yeomans-based MINLP 13 1.38 2.83 83.15 150 79 565 

New 16 1.18 1.76 73.12 150 13 643 

 

Data characterizing the models are listed in Table 5.1, as follow: number of equations; 

number of non-linear equations amongst them; number of variables; and number of binary 

variables amongst them. The new model uses slightly more variables and less equations than 

the Yeomans model; but the number of binary variables is decreased significantly, since the 

new model is a binarily minimal one.  

Table 5.2 collects the data of the optimal solution: the number of equilibrium stages; the 

column diameter [m]; the reflux ratio; and the total cost of the column in [1000 USD/yr]. The 

last two columns show the number of main iterations, and the computation time needed to 

find the optimal solution. 

The new model found a better solution than the Yeomans-based MINLP model, in 150 

iterations; and the solution time was also significantly faster, with almost 83 %. 

 

5.7.2. Example 5.2 

In this example, the target is separating equimolar methanol-propanol-buthanol mixture. The 

feed flow rate is 100 kmol/h. The specified purity is 0.99 methanol in the distillate, 0.99 

buthanol in the bottom product. The same assumptions are used as in Example 5.1 (ideal 

mixture, CMO, constant atmospheric pressure). The phase equilibrium is calculated also with 

the Raoult-Dalton equation (Eqs. 5.73-5.74), and the vapor pressure with the Antoine 

equation (Eq. 5.75). The Antoine constants (Gmehling et al., 1977) are listed in Table A3 in 

Appendix.  

The maximum number of stages was set to 63. The initial values were calculated by 

modelling the process using the maximal number of stages and the specified prescribed 
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product purity. The modelling software was ChemCAD. The stopping criterion was a 

specified maximum number of iterations. 

The model characteristics are presented in Table 5.3, and the computational results in 

Table 5.4.  
 

Table 5.3. Model characteristics of Example 5.2 

Model No. of 
eqs. 

No. of  
non-lin. eqs. 

No. of 
vars. 

No. of bin. 
vars. 

Yeomans-based MINLP 2983 515 1778 60 

New 2224 520 2027 10 
 

Table 5.4. Computational results of Example 5.2 

Model Nst DC Ref Objective 
function No. of iters. Solution. time 

(CPU s) 

Yeomans-based MINLP 41 0.67 0.825 68.257 150 81 471 

New 15 0.71 1.052 43.058 150 90 450 
 

In this case the model characteristics are similar to those in Example 5.1. The new model 

contains a bit more non-linear equations and variables, but less number of equations, and 

significantly less number of binary variables. The Yeomans-based MINLP model ran through 

the 150 iterations about 10 % faster than the new model, but the found optimum of the latter 

is better with almost 37 %. 

 

5.7.3. Example 5.3 

In Example 5.3 equimolar ethanol-water mixture is chosen as feed stream to be separated. The 

feed flowrate is 100 kmol/h. The required purity is 0.85 ethanol in the distillate and 0.999 

water in the bottom product. The CMO and constant atmospheric pressure assumptions were 

used. The phase equilibrium is calculated with the modified Raoult-Dalton equation: 

c
V

c yPf ⋅=  (5.76) 

)(0 Tpxf ccc
L

c ⋅⋅= γ  (5.77) 

where γc is the activity coefficient of component c calculated by the Margules-equations: 
2
211221121 ])(2[ln xxAAA ⋅⋅−⋅+=γ  (5.78) 

2
122112212 ])(2[ln xxAAA ⋅⋅−⋅+=γ  (5.79) 

The vapor pressure is modelled with the Antoine equations (Eq. 5.75). The model parameters 

(Gmehling et al., 1977) are listed in Tables A4-A5 in Appendix.  
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The maximum number of stages was set to 63. The initial values of the variables were 

calculated by modelling the process using the maximum number of stages and the specified 

product purity. The modelling software was ChemCAD. The stopping criterion was a 

specified maximum number of iterations. 

The model characteristics are collected in Table 5.5, and the computational results in 

Table 5.6.  

 

Table 5.5. Model characteristics of Example 5.3 

Model No. of 
eqs. 

No. of  
non-lin. eqs. 

No. of 
vars. 

No. of bin. 
vars. 

Yeomans-based MINLP 2177 640 1398 60 

New 1718 645 1575 10 

 

Table 5.6. Computational results of Example 5.3 

Model Nst DC Ref Objective 
function No. of iters. Solution. time 

(CPU s) 

Yeomans-based MINLP 47 0.89 2.38 121.9 150 181 564 

New 26 0.95 2.87 100.8 150   10 929 

 

The new model found a better solution 94 % faster than the Yeomans-based MINLP model. 

 

For the sake of completeness, it has to be remarked that the models were tested with the SBB 

MINLP solver, as well. That solver uses the modified branch and bound algorithm, instead of 

outer approximation. However, we cannot conclude unambiguous issue in this case, because 

of the very wide scattering of the results. 

 

5.8. Summary 

A new, R-graph based, superstructure and MINLP model have been developed for distillation 

column synthesis. The improvement of the MINLP model is performed not only during the 

formulation of the mathematical model, but already the superstructure is generated in a shape 

as to have better MINLP formulation. 

First, the Basic GDP Representation is generated automatically, based on the superstructure. 

An MINLP Representation is formulated by transforming the logical relation into algebraic 

ones, and omitting the redundant equations and variables.  
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The MINLP model is idealized excluding the representation of the non-considered graphs and 

structures. Finally, the number of binary variables is decreased to the minimum. Namely, the 

Binarily Minimal and Ideal MINLP Representation is generated. 

The final MINLP model is compared to the MINLP transformed from the GDP model of 

Yeomans and Grossmann (2000a). The computational results of three examples show that the 

solution of the new model needs less computational time, and provides better local optima. 
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6. Major new results 
 

1. Case-based reasoning is suitable for selecting a superstructure with an MINLP model 

of mathematical programming in distillation column synthesis. A case-based 

reasoning method has been developed which can retrieve the most similar case from a 

data base in distillation column synthesis problems of ideal mixture containing maximum 

five components. First, a set of matching cases is retrieved using inductive retrieval. The 

cases are classified according to the operational attributes like sharp/non-sharp separation, 

heat integration, number of products and feeds. Then the cases of the set are ranked using 

nearest neighbour method according to their similarities to the actual problem considering 

the component types, the boiling point and molar masses of the components, the feed and 

the product compositions. After the retrieval, the three most similar cases are reported. 

The superstructure can be used in the solution of the actual problem. The MINLP model 

and the solution of the selected cases can be adapted to the actual requirements, and the 

adopted solution can be used as an initial point during the optimisation. 

 

2. An automated procedure has been developed for the generation of Basic MINLP 

Representation (BMR) which can serve as a reference to study whether an MINLP 

representation represents a supergraph or not. First, the Basic GDP Representation 

(BGR) is formulated based on the R-graph representation of the superstructure. BGR 

contains the constraints of the units in disjunctive form, the balances of input and output 

ports, and the cost function. BGR does not include any additional logical constraints but 

the unit relations; therefore, it represents all the subgraphs of the supergraph. Then BMR 

is generated from BGR using binary variables instead of logical ones, and transforming 

logical relations into algebraic ones. The generation of BGR and BMR is performed 

automatically from the R-supergraph; therefore, BMR can serve as a reference in the 

comparison of an MINLP Representation (MR) whether it represents the supergraph or 

not. An MR represents the supergraph if a bijective mapping can be given between a 

subset of the feasible region of MR and the feasible region of BMR. 

 

3. An MINLP Representation (MR) is “good” if it represents only the considered graphs 

of the supergraphs. In this case, MR is called Ideal MINLP Representation (IMR). 

IMR can always be constructed by excluding the representations of the non-considered 
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graphs. The representation of non-considered graphs can be excluded by extending the 

MR with algebraic transformations of pure logical constraints. Computational results 

show that idealization of an MR decreases the solution time, and increases the maximum 

solvable size of the problem. 

 

4. An MINLP Representation (MR) is “good” if it uses minimal number of binary 

variables to make distinction between different structures. In this case, MR is called 

Binarily Minimal MINLP Representation (BMMR). This means the use of nbv number 

of binary variables in case of ng number of represented graphs, where nbv is the smallest 

whole number that satisfies nbv ≥ log2 ng. BMMR can always be generated by introducing 

new binary variables instead of the old ones, and transforming the equations. 

Computational results show that decreasing the number of binary variables of an MR 

decreases the solution time and increases the maximum solvable size of the problem. 

 

5. A new, R-graph based, superstructure, and corresponding MINLP model, have been 

developed for the synthesis of a single distillation column. The superstructure is 

generated in a way that makes possible an easy generation of the Binarily Minimal and 

Ideal MINLP Representation. The developed MINLP model is Binarily Minimal and Ideal, 

i.e. it uses minimum number of binary variables to make distinction between structures, 

and it represents considered structures only. The new MINLP model finds better local 

optima in shorter computational time than the MINLP model based on the GDP model of 

Yeomans and Grossmann (2000a). 
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Abbreviations and notations 

Abbreviations 

BDIMR Binarily Decreased and Ideal MINLP Representation 

BGR Basic GDP Representation 

BMIMR Binarily Minimal and Ideal MINLP Representation 

BMR Basic MINLP Representation 

BMMR Binarily Minimal MINLP Representation 

CBR Case-Based Reasoning 

CMR Conventional MINLP Representation 

CNF Conjunctive Normal Form 

DNF Disjunctive Normal Form 

GDP Generalized Disjunctive Programming 

HEN Heat Exchange Network 

HENS Heat Exchange Network Synthesis 

IMR Ideal MINLP Representation 

ILP Integer Linear Programming 

LP Linear Programming 

MEN Mass Exchange Network 

MENS Mass Exchange Network Synthesis 

MILP Mixed Integer Linear Programming 

MINLP Mixed Integer Nonlinear Programming 

MR MINLP Representation 

MSA Mass Separating Agent 

MSG Maximal Structure Generation 

NLP Nonlinear Programming 

NSXMR Non-considered Structures eXcluded MINLP Representation 

OTOE One Task-One Equipment 

SEN State-Equipment Network 

SSG Generation of Solution-Structure 

STN State-Task Network 

TAC Total Annual Cost 

VTE Variable Task-Equipment 
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Notations 

Variables and parameters 

a attribute in general 

A cross section of the column [m2] 

A Antoine constant A (parameter) [-] 

B Antoine constant B (parameter)  [-] 

Bot bottom product component flowrate [kmol/hr] 

c cost [USD, USD/yr, or USD/kJ] 

C total cost  [USD/yr] 

C Antoine constant C (parameter)  [-] 

d  design and control variable 

DC column diameter [m] 

dF feed stream component flowrate [kmol/hr] 

Dis distillate component flowrate [kmol/hr] 

dL liquid stream component flowrate between units [kmol/hr] 

dV vapor stream component flowrate between units [kmol/hr] 

e extensive variable 

f fugacity  [Hgmm] 

F feed component flowrate [kmol/hr] 

Fmax F-factor [ Pa ] 

Feed feed flow rate  [kmol/hr] 

hB molar enthalpy of the bottom product [kJ/kmol] 

hD molar enthalpy of the distillate [kJ/kmol] 

hdF component molar enthalpy of feed stream [kJ/kmol] 

hdL component molar liquid enthalpy of stream between units [kJ/kmol] 

hdV component molar vapor enthalpy of stream between units [kJ/kmol] 

hF molar enthalpy of the feed [kJ/kmol] 

∆H latent heat [kJ/kmol] 

hL molar liquid enthalpy for non-transport units [kJ/kmol] 

htL molar liquid enthalpy for transport units [kJ/kmol] 

htV molar vapor enthalpy for transport units [kJ/kmol] 

hV molar vapor enthalpy for non-transport units [kJ/kmol] 

i intensive variable 
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l index of graphs [-] 

L lower bound in Chapter 1 and Chapter 4 

L liquid component flowrate for non-transport units in Chapter 5 [kmol/hr] 

LIQ total liquid flowrate [kmol/hr] 

m normalized molar mass [-] 
•

m  amount flowrate [kg/s] 

M molar mass in Chapter 3 [g/mol] 

M Big M parameter 

n number of items denoted in the subscript (parameter) [-] 

N number of items denoted in the subscript (variable) [-] 

NI non-ideality [-] 

o  operation variable 

OBJ objective value 

P pressure  [Hgmm] 

q enthalpy state [-] 

Q integer variable in Binarily Minimal Representation [-] 

QC effective heat transfer in condenser [kJ/hr] 

QR effective heat transfer in reboiler  [kJ/hr] 

Ref reflux ratio  [-] 

sc similarity value of components [-] 

sim local similarity [-] 

SIM global similarity [-] 

t normalized temperature [-] 

T temperature  [K] 

tL liquid component flowrate for transport units [kmol/hr] 

tV vapor component flowrate for transport units [kmol/hr] 

U upper bound 

UF update factor [-] 

UNITS number of membrane modules in a section [-] 

V vapor component flowrate for non-transport units [kmol/hr] 

VAP total vapor flowrate [kmol/hr] 

w weight 

x binary variable in Chapter 1 and Chapter 4 [mol/mol] 
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x liquid mole fraction in Chapter 1 and Chapter 5 [mol/mol] 

y vapor mole fraction [mol/mol] 

z binary variable 
~
z  binary variable in Binarily Minimal Representation [-] 

Z logical variable 

 

α number of input ports  [-] 

β number of output ports [-] 

βtax tax factor [-] 

γ activity coefficient [-] 

∆ difference variable  

ε small positive value [-] 

ϕ fraction of stream [-] 

ξ recovery [mol/mol] 

ρ density [kg/m3] 

λ purity requirement, upper bound [mol/mol] 

τ purity requirement, lower bound [mol/mol] 

 

Subscripts 

a attribute 

b boiling point 

bv binary variables 

c component 

cg considered graphs 

ch charge 

cond conditional 

e edge 

f feed 

g graphs 

im units not present 

ip units present 

j equilibrium stage 



Abbreviations and notations 

 

 159

k unit containing equilibrium stages 

l graphs 

m molar mass in Chapter 3 

m unit in Chapter 1 and Chapter 4 

ma membrane section  

max greatest value in the data base in Chapter 3 

max maximum number of modules and sections in Chapter 4 

mb membrane module in a section 

min smallest value in the data base in Chapter 3 

p product 

perm permanent 

r port 

rg represented graphs 

s column section 

st equilibrium stage 

t boiling point in Chapter 3 

t type of unit in Chapter 4 

V vapor 

 

Superscripts 

0 vapor pressure 

B bottom product 

bu boil-up 

C condenser 

cond condensation 

CW cooling water 

D distillate 

F feed 

first first stage 

fix fix 

in inlet 

inner inner stages 

L liquid 
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last last stage 

LPS low pressure steam 

max maximal value 

out outlet 

R reboiler 

ref reflux 

S source case 

T target case in Chapter 3 

T transport unit in Chapter 5 

U conditional unit containing equilibrium stages 

UP upper bound 

V vapor 

vap vaporization 

var variable 

 

Vectors 

d distance vector 

e basis vector 

S attribute vector of source case 

T attribute vector of target case 

x composite vector 

ε non-zero vector of small length 

in other cases the vector of a variable has the same symbol as the variable in bold style 

 

Sets and regions 

B subset of the feasible region 

C set of components 

E set of edges 

FR feasible region 

I0 set of indices for which iz
~

=0 

I1 set of indices for which iz
~

=1 
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Jn sets of equilibrium stages in a unit; n is equal to the number of equilibrium 

stages in the particular unit 

K set of conditional units in a column section 

M set of units 

R set of graphs in Chapter 4 

R set of real numbers in Chapter 1 and Chapter 4 

S set of column sections /1=lower, 2=upper/ 

X region of continuous variables 

Z region of binary variables 

Z  region of logical variables 

 

 

Functions 

f function in general 

g function in general 

h function in general 

P function of unit operations 

Pfix function of fix cost 

Pvar function of variable cost 

Φ function in general 

Ω logical truth function 
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Appendix 

MINLP representation of Kocis and Grossmann (1987) 
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Thermodynamic constants 

 

Table A1. Antoine constants in Example 3.3 

 Ac Bc Cc 
heptane 6.89386 1264.370 216.640 
toluene 6.95087 1342.31 219.187 

 

Table A2. Antoine constants in Example 5.1 

 Ac Bc Cc 
benzene 6.87987 1196.76 219.161 
toluene 6.95087 1342.31 219.187 

 

Table A3. Antoine constants in Example 5.2 

 Ac Bc Cc 
methanol 8.08097 1582.271 239.726 
propanol 8.37895 1788.02 227.438 
buthanol 7.838 1558.19 196.881 
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Table A4. Antoine constants in Example 5.3 

 Ac Bc Cc 
ethanol 8.11220 1592.864 226.184 
water 8.07131 1730.630 233.426 

 

Table A5. Margules parameters in Example 5.3 

A12 (ethanol-water) 1.5871 
A21 (water-ethanol) 0.7941 
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